Yi Li,Xiaomin Xiong,Xiaohua Liu,Mengke Xu,Boping Yang,Xiaoju Li,Yu Li,Bo Lin,Bo Xu
{"title":"利用多模式学习预测 BRCA 基因突变并对靶向治疗反应进行分层:一项多中心研究。","authors":"Yi Li,Xiaomin Xiong,Xiaohua Liu,Mengke Xu,Boping Yang,Xiaoju Li,Yu Li,Bo Lin,Bo Xu","doi":"10.1080/07853890.2024.2399759","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nThe status of BRCA1/2 genes plays a crucial role in the treatment decision-making process for multiple cancer types. However, due to high costs and limited resources, a demand for BRCA1/2 genetic testing among patients is currently unmet. Notably, not all patients with BRCA1/2 mutations achieve favorable outcomes with poly (ADP-ribose) polymerase inhibitors (PARPi), indicating the necessity for risk stratification. In this study, we aimed to develop and validate a multimodal model for predicting BRCA1/2 gene status and prognosis with PARPi treatment.\r\n\r\nMETHODS\r\nWe included 1695 slides from 1417 patients with ovarian, breast, prostate, and pancreatic cancers across three independent cohorts. Using a self-attention mechanism, we constructed a multi-instance attention model (MIAM) to detect BRCA1/2 gene status from hematoxylin and eosin (H&E) pathological images. We further combined tissue features from the MIAM model, cell features, and clinical factors (the MIAM-C model) to predict BRCA1/2 mutations and progression-free survival (PFS) with PARPi therapy. Model performance was evaluated using area under the curve (AUC) and Kaplan-Meier analysis. Morphological features contributing to MIAM-C were analyzed for interpretability.\r\n\r\nRESULTS\r\nAcross the four cancer types, MIAM-C outperformed the deep learning-based MIAM in identifying the BRCA1/2 genotype. Interpretability analysis revealed that high-attention regions included high-grade tumors and lymphocytic infiltration, which correlated with BRCA1/2 mutations. Notably, high lymphocyte ratios appeared characteristic of BRCA1/2 mutations. Furthermore, MIAM-C predicted PARPi therapy response (log-rank p < 0.05) and served as an independent prognostic factor for patients with BRCA1/2-mutant ovarian cancer (p < 0.05, hazard ratio:0.4, 95% confidence interval: 0.16-0.99).\r\n\r\nCONCLUSIONS\r\nThe MIAM-C model accurately detected BRCA1/2 gene status and effectively stratified prognosis for patients with BRCA1/2 mutations.","PeriodicalId":8371,"journal":{"name":"Annals of medicine","volume":"266 1","pages":"2399759"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting BRCA mutation and stratifying targeted therapy response using multimodal learning: a multicenter study.\",\"authors\":\"Yi Li,Xiaomin Xiong,Xiaohua Liu,Mengke Xu,Boping Yang,Xiaoju Li,Yu Li,Bo Lin,Bo Xu\",\"doi\":\"10.1080/07853890.2024.2399759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND\\r\\nThe status of BRCA1/2 genes plays a crucial role in the treatment decision-making process for multiple cancer types. However, due to high costs and limited resources, a demand for BRCA1/2 genetic testing among patients is currently unmet. Notably, not all patients with BRCA1/2 mutations achieve favorable outcomes with poly (ADP-ribose) polymerase inhibitors (PARPi), indicating the necessity for risk stratification. In this study, we aimed to develop and validate a multimodal model for predicting BRCA1/2 gene status and prognosis with PARPi treatment.\\r\\n\\r\\nMETHODS\\r\\nWe included 1695 slides from 1417 patients with ovarian, breast, prostate, and pancreatic cancers across three independent cohorts. Using a self-attention mechanism, we constructed a multi-instance attention model (MIAM) to detect BRCA1/2 gene status from hematoxylin and eosin (H&E) pathological images. We further combined tissue features from the MIAM model, cell features, and clinical factors (the MIAM-C model) to predict BRCA1/2 mutations and progression-free survival (PFS) with PARPi therapy. Model performance was evaluated using area under the curve (AUC) and Kaplan-Meier analysis. Morphological features contributing to MIAM-C were analyzed for interpretability.\\r\\n\\r\\nRESULTS\\r\\nAcross the four cancer types, MIAM-C outperformed the deep learning-based MIAM in identifying the BRCA1/2 genotype. Interpretability analysis revealed that high-attention regions included high-grade tumors and lymphocytic infiltration, which correlated with BRCA1/2 mutations. Notably, high lymphocyte ratios appeared characteristic of BRCA1/2 mutations. Furthermore, MIAM-C predicted PARPi therapy response (log-rank p < 0.05) and served as an independent prognostic factor for patients with BRCA1/2-mutant ovarian cancer (p < 0.05, hazard ratio:0.4, 95% confidence interval: 0.16-0.99).\\r\\n\\r\\nCONCLUSIONS\\r\\nThe MIAM-C model accurately detected BRCA1/2 gene status and effectively stratified prognosis for patients with BRCA1/2 mutations.\",\"PeriodicalId\":8371,\"journal\":{\"name\":\"Annals of medicine\",\"volume\":\"266 1\",\"pages\":\"2399759\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/07853890.2024.2399759\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/07853890.2024.2399759","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Predicting BRCA mutation and stratifying targeted therapy response using multimodal learning: a multicenter study.
BACKGROUND
The status of BRCA1/2 genes plays a crucial role in the treatment decision-making process for multiple cancer types. However, due to high costs and limited resources, a demand for BRCA1/2 genetic testing among patients is currently unmet. Notably, not all patients with BRCA1/2 mutations achieve favorable outcomes with poly (ADP-ribose) polymerase inhibitors (PARPi), indicating the necessity for risk stratification. In this study, we aimed to develop and validate a multimodal model for predicting BRCA1/2 gene status and prognosis with PARPi treatment.
METHODS
We included 1695 slides from 1417 patients with ovarian, breast, prostate, and pancreatic cancers across three independent cohorts. Using a self-attention mechanism, we constructed a multi-instance attention model (MIAM) to detect BRCA1/2 gene status from hematoxylin and eosin (H&E) pathological images. We further combined tissue features from the MIAM model, cell features, and clinical factors (the MIAM-C model) to predict BRCA1/2 mutations and progression-free survival (PFS) with PARPi therapy. Model performance was evaluated using area under the curve (AUC) and Kaplan-Meier analysis. Morphological features contributing to MIAM-C were analyzed for interpretability.
RESULTS
Across the four cancer types, MIAM-C outperformed the deep learning-based MIAM in identifying the BRCA1/2 genotype. Interpretability analysis revealed that high-attention regions included high-grade tumors and lymphocytic infiltration, which correlated with BRCA1/2 mutations. Notably, high lymphocyte ratios appeared characteristic of BRCA1/2 mutations. Furthermore, MIAM-C predicted PARPi therapy response (log-rank p < 0.05) and served as an independent prognostic factor for patients with BRCA1/2-mutant ovarian cancer (p < 0.05, hazard ratio:0.4, 95% confidence interval: 0.16-0.99).
CONCLUSIONS
The MIAM-C model accurately detected BRCA1/2 gene status and effectively stratified prognosis for patients with BRCA1/2 mutations.
期刊介绍:
Annals of Medicine is one of the world’s leading general medical review journals, boasting an impact factor of 5.435. It presents high-quality topical review articles, commissioned by the Editors and Editorial Committee, as well as original articles. The journal provides the current opinion on recent developments across the major medical specialties, with a particular focus on internal medicine. The peer-reviewed content of the journal keeps readers updated on the latest advances in the understanding of the pathogenesis of diseases, and in how molecular medicine and genetics can be applied in daily clinical practice.