通过诱导级联氧化应激增强癌症协同治疗的可生物降解持久性 ROS 生成纳米声纳敏化剂

IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Nanoscale Horizons Pub Date : 2024-09-11 DOI:10.1039/D4NH00189C
Yue Chen, Tong Ding, Zhengzheng Qian, Zerui Ma, Liming Zhou, Zhiling Li, Runkai Lv, Yinghui Xu, Yingjie Xu, Linhui Hao, Chen Zhu, Xikuang Yao, Wenying Yu and Wenpei Fan
{"title":"通过诱导级联氧化应激增强癌症协同治疗的可生物降解持久性 ROS 生成纳米声纳敏化剂","authors":"Yue Chen, Tong Ding, Zhengzheng Qian, Zerui Ma, Liming Zhou, Zhiling Li, Runkai Lv, Yinghui Xu, Yingjie Xu, Linhui Hao, Chen Zhu, Xikuang Yao, Wenying Yu and Wenpei Fan","doi":"10.1039/D4NH00189C","DOIUrl":null,"url":null,"abstract":"<p >Sonodynamic therapy (SDT) is gaining popularity in cancer treatment due to its superior controllability and high tissue permeability. Nonetheless, the efficacy of SDT is severely diminished by the transient generation of limited reactive oxygen species (ROS). Herein, we introduce an acid-activated nanosonosensitizer, CaO<small><sub>2</sub></small>@PCN, by the controllable coating of porphyrinic metal–organic frameworks (PCN-224) on CaO<small><sub>2</sub></small> to induce cascaded oxidative stress in tumors. The PCN-224 doping can generate ROS during SDT to induce intracellular oxidative stress and abnormal calcium channels. Meanwhile, the ultrasound also promotes extracellular calcium influx. In addition, CaO<small><sub>2</sub></small>@PCN sequentially degrades in the tumor cell lysosomes, releasing Ca<small><sup>2+</sup></small> and H<small><sub>2</sub></small>O<small><sub>2</sub></small> to induce further abnormal calcium channels and elevate the levels of Ca<small><sup>2+</sup></small>. Insufficient catalase (CAT) in tumor cells promotes intracellular calcium overload, which can induce persistent ROS generation and mitochondrial dysfunction through ion interference therapy (IIT). More importantly, PCN-224 also protects CaO<small><sub>2</sub></small> against significant degradation under neutral conditions. Hence, the well-designed CaO<small><sub>2</sub></small>@PCN produces synergistic SDT/IIT effects and persistent ROS against cancer. More notably, the acidity-responsive biodegradability endows CaO<small><sub>2</sub></small>@PCN with excellent biosafety and promising clinical potential.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 12","pages":" 2306-2319"},"PeriodicalIF":8.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biodegradable persistent ROS-generating nanosonosensitizers for enhanced synergistic cancer therapy by inducing cascaded oxidative stress†\",\"authors\":\"Yue Chen, Tong Ding, Zhengzheng Qian, Zerui Ma, Liming Zhou, Zhiling Li, Runkai Lv, Yinghui Xu, Yingjie Xu, Linhui Hao, Chen Zhu, Xikuang Yao, Wenying Yu and Wenpei Fan\",\"doi\":\"10.1039/D4NH00189C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Sonodynamic therapy (SDT) is gaining popularity in cancer treatment due to its superior controllability and high tissue permeability. Nonetheless, the efficacy of SDT is severely diminished by the transient generation of limited reactive oxygen species (ROS). Herein, we introduce an acid-activated nanosonosensitizer, CaO<small><sub>2</sub></small>@PCN, by the controllable coating of porphyrinic metal–organic frameworks (PCN-224) on CaO<small><sub>2</sub></small> to induce cascaded oxidative stress in tumors. The PCN-224 doping can generate ROS during SDT to induce intracellular oxidative stress and abnormal calcium channels. Meanwhile, the ultrasound also promotes extracellular calcium influx. In addition, CaO<small><sub>2</sub></small>@PCN sequentially degrades in the tumor cell lysosomes, releasing Ca<small><sup>2+</sup></small> and H<small><sub>2</sub></small>O<small><sub>2</sub></small> to induce further abnormal calcium channels and elevate the levels of Ca<small><sup>2+</sup></small>. Insufficient catalase (CAT) in tumor cells promotes intracellular calcium overload, which can induce persistent ROS generation and mitochondrial dysfunction through ion interference therapy (IIT). More importantly, PCN-224 also protects CaO<small><sub>2</sub></small> against significant degradation under neutral conditions. Hence, the well-designed CaO<small><sub>2</sub></small>@PCN produces synergistic SDT/IIT effects and persistent ROS against cancer. More notably, the acidity-responsive biodegradability endows CaO<small><sub>2</sub></small>@PCN with excellent biosafety and promising clinical potential.</p>\",\"PeriodicalId\":93,\"journal\":{\"name\":\"Nanoscale Horizons\",\"volume\":\" 12\",\"pages\":\" 2306-2319\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/nh/d4nh00189c\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nh/d4nh00189c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

声动力疗法(SDT)因其卓越的可控性和高组织渗透性,在癌症治疗中越来越受欢迎。然而,有限活性氧(ROS)的短暂生成严重削弱了声动力疗法的疗效。在此,我们通过在 CaO2 上可控地包覆卟啉金属有机框架(PCN-224),引入了一种酸激活纳米声纳敏化剂 CaO2@PCN,以诱导肿瘤中的级联氧化应激。PCN-224 掺杂可在 SDT 过程中产生 ROS,诱导细胞内氧化应激和钙通道异常。同时,超声还能促进细胞外钙离子流入。此外,CaO2@PCN 会在肿瘤细胞溶酶体中依次降解,释放出 Ca2+ 和 H2O2,进一步诱导钙通道异常和 Ca2+ 水平升高。肿瘤细胞中过氧化氢酶(CAT)不足会促进细胞内钙超载,从而通过离子干扰治疗(IIT)诱发持续的 ROS 生成和线粒体功能障碍。更重要的是,PCN-224 还能保护 CaO2 在中性条件下不被大量降解。因此,精心设计的 CaO2@PCN 可产生 SDT/IIT 协同效应和持久的 ROS 抗癌作用。更值得注意的是,酸性响应生物降解性使 CaO2@PCN 具有极佳的生物安全性和广阔的临床应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biodegradable persistent ROS-generating nanosonosensitizers for enhanced synergistic cancer therapy by inducing cascaded oxidative stress†

Sonodynamic therapy (SDT) is gaining popularity in cancer treatment due to its superior controllability and high tissue permeability. Nonetheless, the efficacy of SDT is severely diminished by the transient generation of limited reactive oxygen species (ROS). Herein, we introduce an acid-activated nanosonosensitizer, CaO2@PCN, by the controllable coating of porphyrinic metal–organic frameworks (PCN-224) on CaO2 to induce cascaded oxidative stress in tumors. The PCN-224 doping can generate ROS during SDT to induce intracellular oxidative stress and abnormal calcium channels. Meanwhile, the ultrasound also promotes extracellular calcium influx. In addition, CaO2@PCN sequentially degrades in the tumor cell lysosomes, releasing Ca2+ and H2O2 to induce further abnormal calcium channels and elevate the levels of Ca2+. Insufficient catalase (CAT) in tumor cells promotes intracellular calcium overload, which can induce persistent ROS generation and mitochondrial dysfunction through ion interference therapy (IIT). More importantly, PCN-224 also protects CaO2 against significant degradation under neutral conditions. Hence, the well-designed CaO2@PCN produces synergistic SDT/IIT effects and persistent ROS against cancer. More notably, the acidity-responsive biodegradability endows CaO2@PCN with excellent biosafety and promising clinical potential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
期刊最新文献
Achieving neuronal dynamics with spike encoding and spatial-temporal summation in vanadium-based threshold switching memristor for asynchronous signal integration. Record-high hyperpolarizabilities in atomically precise single metal-doped silver nanoclusters. Revolutionizing healthcare: inorganic medicinal nanoarchitectonics for advanced theranostics. Molecular-scale in-operando reconfigurable electronic hardware. Reflecting on Nanoscale Horizons in 2024.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1