Soohyun Go, Woosuck Kwon, Deokgi Hong, Taemin Lee, Sang-Ho Oh, Daewon Bae, Jeong-Heon Kim, Seolha Lim, Young-Chang Joo, Dae-Hyun Nam
{"title":"用于选择性还原二氧化碳的铜锡合金电催化剂的热力学相位控制","authors":"Soohyun Go, Woosuck Kwon, Deokgi Hong, Taemin Lee, Sang-Ho Oh, Daewon Bae, Jeong-Heon Kim, Seolha Lim, Young-Chang Joo, Dae-Hyun Nam","doi":"10.1039/d4nh00393d","DOIUrl":null,"url":null,"abstract":"In the electrochemical CO<small><sub>2</sub></small> reduction reaction (CO<small><sub>2</sub></small>RR), Cu alloy electrocatalysts can control the CO<small><sub>2</sub></small>RR selectivity by modulating the intermediate binding energy. Here, we report the thermodynamic-based Cu-Sn bimetallic phase control in heterogeneous catalysts for selective CO<small><sub>2</sub></small> conversion. Starting from the thermodynamic understanding about Cu-Sn bimetallic compounds, we established the specific processing window for Cu-Sn bimetallic phase control. To modulate the Cu-Sn bimetallic phases, we controlled the oxygen partial pressure (pO<small><sub>2</sub></small>) during the calcination of electrospun Cu and Sn ions-incorporated nanofibers (NFs). This resulted in the formation of CuO-SnO<small><sub>2</sub></small> NFs (full oxidation), Cu-SnO<small><sub>2</sub></small> NFs (selective reduction), Cu<small><sub>3</sub></small>Sn/CNFs, Cu<small><sub>41</sub></small>Sn<small><sub>11</sub></small>/CNFs, and Cu<small><sub>6</sub></small>Sn<small><sub>5</sub></small>/CNFs (full reduction). In the CO<small><sub>2</sub></small>RR, CuO-SnO<small><sub>2</sub></small> NFs exhibited formate (HCOO<small><sup>-</sup></small>) production and Cu-SnO<small><sub>2</sub></small> NFs showed carbon monoxide (CO) production with the Faradaic efficiency (FE) of 65.3% at -0.99 V (vs RHE) and 59.1% at -0.89 V (vs RHE) respectively. Cu-rich Cu<small><sub>41</sub></small>Sn<small><sub>11</sub></small>/CNFs and Cu<small><sub>3</sub></small>Sn/CNFs enhanced the methane (CH<small><sub>4</sub></small>) production with the FE of 39.1% at -1.36 V (vs RHE) and 34.7% at -1.5 V (vs RHE). However, Sn-rich Cu<small><sub>6</sub></small>Sn<small><sub>5</sub></small>/CNFs produced HCOO<small><sup>-</sup></small> with the FE of 58.6% at -2.31 V (vs RHE). This study suggests the methodology for bimetallic catalyst design and steering the CO<small><sub>2</sub></small>RR pathway by controlling the active sites of Cu-Sn alloys.","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic Phase Control of Cu-Sn Alloy Electrocatalysts for Selective CO2 Reduction\",\"authors\":\"Soohyun Go, Woosuck Kwon, Deokgi Hong, Taemin Lee, Sang-Ho Oh, Daewon Bae, Jeong-Heon Kim, Seolha Lim, Young-Chang Joo, Dae-Hyun Nam\",\"doi\":\"10.1039/d4nh00393d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the electrochemical CO<small><sub>2</sub></small> reduction reaction (CO<small><sub>2</sub></small>RR), Cu alloy electrocatalysts can control the CO<small><sub>2</sub></small>RR selectivity by modulating the intermediate binding energy. Here, we report the thermodynamic-based Cu-Sn bimetallic phase control in heterogeneous catalysts for selective CO<small><sub>2</sub></small> conversion. Starting from the thermodynamic understanding about Cu-Sn bimetallic compounds, we established the specific processing window for Cu-Sn bimetallic phase control. To modulate the Cu-Sn bimetallic phases, we controlled the oxygen partial pressure (pO<small><sub>2</sub></small>) during the calcination of electrospun Cu and Sn ions-incorporated nanofibers (NFs). This resulted in the formation of CuO-SnO<small><sub>2</sub></small> NFs (full oxidation), Cu-SnO<small><sub>2</sub></small> NFs (selective reduction), Cu<small><sub>3</sub></small>Sn/CNFs, Cu<small><sub>41</sub></small>Sn<small><sub>11</sub></small>/CNFs, and Cu<small><sub>6</sub></small>Sn<small><sub>5</sub></small>/CNFs (full reduction). In the CO<small><sub>2</sub></small>RR, CuO-SnO<small><sub>2</sub></small> NFs exhibited formate (HCOO<small><sup>-</sup></small>) production and Cu-SnO<small><sub>2</sub></small> NFs showed carbon monoxide (CO) production with the Faradaic efficiency (FE) of 65.3% at -0.99 V (vs RHE) and 59.1% at -0.89 V (vs RHE) respectively. Cu-rich Cu<small><sub>41</sub></small>Sn<small><sub>11</sub></small>/CNFs and Cu<small><sub>3</sub></small>Sn/CNFs enhanced the methane (CH<small><sub>4</sub></small>) production with the FE of 39.1% at -1.36 V (vs RHE) and 34.7% at -1.5 V (vs RHE). However, Sn-rich Cu<small><sub>6</sub></small>Sn<small><sub>5</sub></small>/CNFs produced HCOO<small><sup>-</sup></small> with the FE of 58.6% at -2.31 V (vs RHE). This study suggests the methodology for bimetallic catalyst design and steering the CO<small><sub>2</sub></small>RR pathway by controlling the active sites of Cu-Sn alloys.\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4nh00393d\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nh00393d","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Thermodynamic Phase Control of Cu-Sn Alloy Electrocatalysts for Selective CO2 Reduction
In the electrochemical CO2 reduction reaction (CO2RR), Cu alloy electrocatalysts can control the CO2RR selectivity by modulating the intermediate binding energy. Here, we report the thermodynamic-based Cu-Sn bimetallic phase control in heterogeneous catalysts for selective CO2 conversion. Starting from the thermodynamic understanding about Cu-Sn bimetallic compounds, we established the specific processing window for Cu-Sn bimetallic phase control. To modulate the Cu-Sn bimetallic phases, we controlled the oxygen partial pressure (pO2) during the calcination of electrospun Cu and Sn ions-incorporated nanofibers (NFs). This resulted in the formation of CuO-SnO2 NFs (full oxidation), Cu-SnO2 NFs (selective reduction), Cu3Sn/CNFs, Cu41Sn11/CNFs, and Cu6Sn5/CNFs (full reduction). In the CO2RR, CuO-SnO2 NFs exhibited formate (HCOO-) production and Cu-SnO2 NFs showed carbon monoxide (CO) production with the Faradaic efficiency (FE) of 65.3% at -0.99 V (vs RHE) and 59.1% at -0.89 V (vs RHE) respectively. Cu-rich Cu41Sn11/CNFs and Cu3Sn/CNFs enhanced the methane (CH4) production with the FE of 39.1% at -1.36 V (vs RHE) and 34.7% at -1.5 V (vs RHE). However, Sn-rich Cu6Sn5/CNFs produced HCOO- with the FE of 58.6% at -2.31 V (vs RHE). This study suggests the methodology for bimetallic catalyst design and steering the CO2RR pathway by controlling the active sites of Cu-Sn alloys.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture