用于选择性还原二氧化碳的铜锡合金电催化剂的热力学相位控制

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2024-09-10 DOI:10.1039/d4nh00393d
Soohyun Go, Woosuck Kwon, Deokgi Hong, Taemin Lee, Sang-Ho Oh, Daewon Bae, Jeong-Heon Kim, Seolha Lim, Young-Chang Joo, Dae-Hyun Nam
{"title":"用于选择性还原二氧化碳的铜锡合金电催化剂的热力学相位控制","authors":"Soohyun Go, Woosuck Kwon, Deokgi Hong, Taemin Lee, Sang-Ho Oh, Daewon Bae, Jeong-Heon Kim, Seolha Lim, Young-Chang Joo, Dae-Hyun Nam","doi":"10.1039/d4nh00393d","DOIUrl":null,"url":null,"abstract":"In the electrochemical CO<small><sub>2</sub></small> reduction reaction (CO<small><sub>2</sub></small>RR), Cu alloy electrocatalysts can control the CO<small><sub>2</sub></small>RR selectivity by modulating the intermediate binding energy. Here, we report the thermodynamic-based Cu-Sn bimetallic phase control in heterogeneous catalysts for selective CO<small><sub>2</sub></small> conversion. Starting from the thermodynamic understanding about Cu-Sn bimetallic compounds, we established the specific processing window for Cu-Sn bimetallic phase control. To modulate the Cu-Sn bimetallic phases, we controlled the oxygen partial pressure (pO<small><sub>2</sub></small>) during the calcination of electrospun Cu and Sn ions-incorporated nanofibers (NFs). This resulted in the formation of CuO-SnO<small><sub>2</sub></small> NFs (full oxidation), Cu-SnO<small><sub>2</sub></small> NFs (selective reduction), Cu<small><sub>3</sub></small>Sn/CNFs, Cu<small><sub>41</sub></small>Sn<small><sub>11</sub></small>/CNFs, and Cu<small><sub>6</sub></small>Sn<small><sub>5</sub></small>/CNFs (full reduction). In the CO<small><sub>2</sub></small>RR, CuO-SnO<small><sub>2</sub></small> NFs exhibited formate (HCOO<small><sup>-</sup></small>) production and Cu-SnO<small><sub>2</sub></small> NFs showed carbon monoxide (CO) production with the Faradaic efficiency (FE) of 65.3% at -0.99 V (vs RHE) and 59.1% at -0.89 V (vs RHE) respectively. Cu-rich Cu<small><sub>41</sub></small>Sn<small><sub>11</sub></small>/CNFs and Cu<small><sub>3</sub></small>Sn/CNFs enhanced the methane (CH<small><sub>4</sub></small>) production with the FE of 39.1% at -1.36 V (vs RHE) and 34.7% at -1.5 V (vs RHE). However, Sn-rich Cu<small><sub>6</sub></small>Sn<small><sub>5</sub></small>/CNFs produced HCOO<small><sup>-</sup></small> with the FE of 58.6% at -2.31 V (vs RHE). This study suggests the methodology for bimetallic catalyst design and steering the CO<small><sub>2</sub></small>RR pathway by controlling the active sites of Cu-Sn alloys.","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic Phase Control of Cu-Sn Alloy Electrocatalysts for Selective CO2 Reduction\",\"authors\":\"Soohyun Go, Woosuck Kwon, Deokgi Hong, Taemin Lee, Sang-Ho Oh, Daewon Bae, Jeong-Heon Kim, Seolha Lim, Young-Chang Joo, Dae-Hyun Nam\",\"doi\":\"10.1039/d4nh00393d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the electrochemical CO<small><sub>2</sub></small> reduction reaction (CO<small><sub>2</sub></small>RR), Cu alloy electrocatalysts can control the CO<small><sub>2</sub></small>RR selectivity by modulating the intermediate binding energy. Here, we report the thermodynamic-based Cu-Sn bimetallic phase control in heterogeneous catalysts for selective CO<small><sub>2</sub></small> conversion. Starting from the thermodynamic understanding about Cu-Sn bimetallic compounds, we established the specific processing window for Cu-Sn bimetallic phase control. To modulate the Cu-Sn bimetallic phases, we controlled the oxygen partial pressure (pO<small><sub>2</sub></small>) during the calcination of electrospun Cu and Sn ions-incorporated nanofibers (NFs). This resulted in the formation of CuO-SnO<small><sub>2</sub></small> NFs (full oxidation), Cu-SnO<small><sub>2</sub></small> NFs (selective reduction), Cu<small><sub>3</sub></small>Sn/CNFs, Cu<small><sub>41</sub></small>Sn<small><sub>11</sub></small>/CNFs, and Cu<small><sub>6</sub></small>Sn<small><sub>5</sub></small>/CNFs (full reduction). In the CO<small><sub>2</sub></small>RR, CuO-SnO<small><sub>2</sub></small> NFs exhibited formate (HCOO<small><sup>-</sup></small>) production and Cu-SnO<small><sub>2</sub></small> NFs showed carbon monoxide (CO) production with the Faradaic efficiency (FE) of 65.3% at -0.99 V (vs RHE) and 59.1% at -0.89 V (vs RHE) respectively. Cu-rich Cu<small><sub>41</sub></small>Sn<small><sub>11</sub></small>/CNFs and Cu<small><sub>3</sub></small>Sn/CNFs enhanced the methane (CH<small><sub>4</sub></small>) production with the FE of 39.1% at -1.36 V (vs RHE) and 34.7% at -1.5 V (vs RHE). However, Sn-rich Cu<small><sub>6</sub></small>Sn<small><sub>5</sub></small>/CNFs produced HCOO<small><sup>-</sup></small> with the FE of 58.6% at -2.31 V (vs RHE). This study suggests the methodology for bimetallic catalyst design and steering the CO<small><sub>2</sub></small>RR pathway by controlling the active sites of Cu-Sn alloys.\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4nh00393d\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nh00393d","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在电化学二氧化碳还原反应(CO2RR)中,铜合金电催化剂可以通过调节中间体结合能来控制 CO2RR 的选择性。在此,我们报告了基于热力学的 Cu-Sn 双金属相控制在异相催化剂中用于选择性 CO2 转化的情况。从对铜锡双金属化合物的热力学理解出发,我们建立了铜锡双金属相控制的特定加工窗口。为了调节铜锡双金属相,我们在煅烧电纺铜锡离子掺杂纳米纤维(NFs)的过程中控制了氧分压(pO2)。结果形成了 CuO-SnO2 NFs(完全氧化)、Cu-SnO2 NFs(选择性还原)、Cu3Sn/CNFs、Cu41Sn11/CNFs 和 Cu6Sn5/CNFs(完全还原)。在 CO2RR 中,CuO-SnO2 NFs 产生甲酸盐 (HCOO-),Cu-SnO2 NFs 产生一氧化碳 (CO),其法拉第效率 (FE) 分别为 -0.99 V 时 65.3%(相对于 RHE)和 -0.89 V 时 59.1%(相对于 RHE)。富含铜的 Cu41Sn11/CNFs 和 Cu3Sn/CNFs 提高了甲烷(CH4)的生产,在-1.36 V(相对于 RHE)和-1.5 V(相对于 RHE)时的 FE 分别为 39.1%和 34.7%。然而,富含锡的 Cu6Sn5/CNFs 在 -2.31 V 时产生 HCOO-,FE 为 58.6%(相对于 RHE)。这项研究提出了双金属催化剂设计方法,并通过控制铜-锡合金的活性位点引导 CO2RR 途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermodynamic Phase Control of Cu-Sn Alloy Electrocatalysts for Selective CO2 Reduction
In the electrochemical CO2 reduction reaction (CO2RR), Cu alloy electrocatalysts can control the CO2RR selectivity by modulating the intermediate binding energy. Here, we report the thermodynamic-based Cu-Sn bimetallic phase control in heterogeneous catalysts for selective CO2 conversion. Starting from the thermodynamic understanding about Cu-Sn bimetallic compounds, we established the specific processing window for Cu-Sn bimetallic phase control. To modulate the Cu-Sn bimetallic phases, we controlled the oxygen partial pressure (pO2) during the calcination of electrospun Cu and Sn ions-incorporated nanofibers (NFs). This resulted in the formation of CuO-SnO2 NFs (full oxidation), Cu-SnO2 NFs (selective reduction), Cu3Sn/CNFs, Cu41Sn11/CNFs, and Cu6Sn5/CNFs (full reduction). In the CO2RR, CuO-SnO2 NFs exhibited formate (HCOO-) production and Cu-SnO2 NFs showed carbon monoxide (CO) production with the Faradaic efficiency (FE) of 65.3% at -0.99 V (vs RHE) and 59.1% at -0.89 V (vs RHE) respectively. Cu-rich Cu41Sn11/CNFs and Cu3Sn/CNFs enhanced the methane (CH4) production with the FE of 39.1% at -1.36 V (vs RHE) and 34.7% at -1.5 V (vs RHE). However, Sn-rich Cu6Sn5/CNFs produced HCOO- with the FE of 58.6% at -2.31 V (vs RHE). This study suggests the methodology for bimetallic catalyst design and steering the CO2RR pathway by controlling the active sites of Cu-Sn alloys.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Corrigendum to "Janus hydrogel loaded with a CO2-generating chemical reaction system: Construction, characterization, and application in fruit and vegetable preservation" [Food Chemistry 458 (2024) 140271]. Comprehensive physicochemical indicators analysis and quality evaluation model construction for the post-harvest ripening rapeseeds. Evaluation of passive samplers as a cost-effective method to predict the impact of wildfire smoke in grapes and wines. Heat-induced interactions between microfluidized hemp protein particles and caseins or whey proteins. Natural α-glucosidase inhibitors from Aquilaria sinensis leaf-tea: Targeted bio-affinity screening, identification, and inhibition mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1