Katarzyna Skowronek, Radosław Zimroz, Agnieszka Wyłomańska
{"title":"应用于旋转机械振动信号的有限方差测试","authors":"Katarzyna Skowronek, Radosław Zimroz, Agnieszka Wyłomańska","doi":"10.1186/s13362-024-00157-6","DOIUrl":null,"url":null,"abstract":"In this paper we propose an algorithm for testing whether the independent observations come from finite-variance distribution. The preliminary knowledge about the data properties may be crucial for its further analysis and selection of the appropriate model. The idea of the testing procedure is based on the simple observation that the empirical cumulative even moment (ECEM) for data from finite-moments distribution tends to some constant whereas for data coming from heavy-tailed distribution, the ECEM exhibits irregular chaotic behavior. Based on this fact, in this paper we parameterize the regular/irregular behavior of the ECEM and construct a new test statistic. The efficiency of the testing procedure is verified for simulated data from three heavy-tailed distributions with possible finite and infinite variances. The effectiveness is analyzed for data represented in time domain. The simulation study is supported by analysis of real vibration signals from rotating machines. Here, the analyses are provided for data in both the time and time-frequency domains.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing for finite variance with applications to vibration signals from rotating machines\",\"authors\":\"Katarzyna Skowronek, Radosław Zimroz, Agnieszka Wyłomańska\",\"doi\":\"10.1186/s13362-024-00157-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose an algorithm for testing whether the independent observations come from finite-variance distribution. The preliminary knowledge about the data properties may be crucial for its further analysis and selection of the appropriate model. The idea of the testing procedure is based on the simple observation that the empirical cumulative even moment (ECEM) for data from finite-moments distribution tends to some constant whereas for data coming from heavy-tailed distribution, the ECEM exhibits irregular chaotic behavior. Based on this fact, in this paper we parameterize the regular/irregular behavior of the ECEM and construct a new test statistic. The efficiency of the testing procedure is verified for simulated data from three heavy-tailed distributions with possible finite and infinite variances. The effectiveness is analyzed for data represented in time domain. The simulation study is supported by analysis of real vibration signals from rotating machines. Here, the analyses are provided for data in both the time and time-frequency domains.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13362-024-00157-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13362-024-00157-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Testing for finite variance with applications to vibration signals from rotating machines
In this paper we propose an algorithm for testing whether the independent observations come from finite-variance distribution. The preliminary knowledge about the data properties may be crucial for its further analysis and selection of the appropriate model. The idea of the testing procedure is based on the simple observation that the empirical cumulative even moment (ECEM) for data from finite-moments distribution tends to some constant whereas for data coming from heavy-tailed distribution, the ECEM exhibits irregular chaotic behavior. Based on this fact, in this paper we parameterize the regular/irregular behavior of the ECEM and construct a new test statistic. The efficiency of the testing procedure is verified for simulated data from three heavy-tailed distributions with possible finite and infinite variances. The effectiveness is analyzed for data represented in time domain. The simulation study is supported by analysis of real vibration signals from rotating machines. Here, the analyses are provided for data in both the time and time-frequency domains.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.