制作用于纳米光栅和太阳能电池的波纹结构碳化硅 (SiC) 薄膜

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemNanoMat Pub Date : 2024-09-10 DOI:10.1002/cnma.202400455
Gupta Divya, Kalpana Chhoker, Usha Rani, Amena Salim, Rahul Singhal, Vishal Sharma, Sanjeev Aggarwal
{"title":"制作用于纳米光栅和太阳能电池的波纹结构碳化硅 (SiC) 薄膜","authors":"Gupta Divya, Kalpana Chhoker, Usha Rani, Amena Salim, Rahul Singhal, Vishal Sharma, Sanjeev Aggarwal","doi":"10.1002/cnma.202400455","DOIUrl":null,"url":null,"abstract":"In the present study, we aim to investigate the self‐organization of unexplored silicon carbide (SiC) film surfaces under 30 keV oblique Ar+ ions irradiation and hence unprecedented tailoring of optical and electrical characteristics with view of their uses in solar cells, gratings and nano‐ to micro‐scale devices. The surface morphology mainly consisted of triangular shaped nanoparticles which evolves into nanoscale ripple structures with an alignment parallel to the projection of ion beam direction. For the first time, we have demonstrated the fabrication of highly‐ordered ripple patterns with wavelength in visible region over SiC films and applicable as nano‐gratings. The underlying mechanism relies on the structural rearrangement due to transition of film microstructure from amorphous to mixed phase (crystalline, nano‐crystalline and amorphous) and lowering of C=C and C‐C vibration modes by the heavier Si atoms. These nanostructured silicon carbide film shows unparalleled optical (energy gap decreases from 4.60±0.4 eV to 3.16±0.2 eV) & electrical characteristics (conductivity increases from 6.6x10‐11 to 1.12x10‐3 S/m with linear I‐V behavior). Thus, we propose that ripple structured SiC films with wide band gap, high refractive index and high electrical conductivity with ohmic behaviour are promising candidates for application as window layer in solar cells and opto‐electronics.","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of ripple structured silicon carbide (SiC) films for nano‐grating and solar cell applications\",\"authors\":\"Gupta Divya, Kalpana Chhoker, Usha Rani, Amena Salim, Rahul Singhal, Vishal Sharma, Sanjeev Aggarwal\",\"doi\":\"10.1002/cnma.202400455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, we aim to investigate the self‐organization of unexplored silicon carbide (SiC) film surfaces under 30 keV oblique Ar+ ions irradiation and hence unprecedented tailoring of optical and electrical characteristics with view of their uses in solar cells, gratings and nano‐ to micro‐scale devices. The surface morphology mainly consisted of triangular shaped nanoparticles which evolves into nanoscale ripple structures with an alignment parallel to the projection of ion beam direction. For the first time, we have demonstrated the fabrication of highly‐ordered ripple patterns with wavelength in visible region over SiC films and applicable as nano‐gratings. The underlying mechanism relies on the structural rearrangement due to transition of film microstructure from amorphous to mixed phase (crystalline, nano‐crystalline and amorphous) and lowering of C=C and C‐C vibration modes by the heavier Si atoms. These nanostructured silicon carbide film shows unparalleled optical (energy gap decreases from 4.60±0.4 eV to 3.16±0.2 eV) & electrical characteristics (conductivity increases from 6.6x10‐11 to 1.12x10‐3 S/m with linear I‐V behavior). Thus, we propose that ripple structured SiC films with wide band gap, high refractive index and high electrical conductivity with ohmic behaviour are promising candidates for application as window layer in solar cells and opto‐electronics.\",\"PeriodicalId\":54339,\"journal\":{\"name\":\"ChemNanoMat\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemNanoMat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/cnma.202400455\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/cnma.202400455","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们旨在研究碳化硅(SiC)薄膜表面在 30 keV Ar+ 离子斜向辐照下的自组织情况,从而对其光学和电学特性进行前所未有的定制,以期将其应用于太阳能电池、光栅和纳米到微米尺度的设备中。表面形态主要由三角形纳米颗粒组成,这些颗粒演变成纳米级波纹结构,其排列方向与离子束投射方向平行。我们首次展示了在碳化硅薄膜上制造出波长在可见光区域的高有序波纹图案,并将其用作纳米支架。其基本机理依赖于薄膜微观结构从非晶态向混合相(晶体、纳米晶体和非晶态)转变所导致的结构重排,以及较重硅原子对 C=C 和 C-C 振动模式的降低。这些纳米结构碳化硅薄膜显示出无与伦比的光学特性(能隙从 4.60±0.4 eV 减小到 3.16±0.2 eV)和电子特性(电导率从 6.6x10-11 增加到 1.12x10-3 S/m,具有线性 I-V 行为)。因此,我们认为具有宽带隙、高折射率和高电导率及欧姆特性的波纹结构碳化硅薄膜有望用作太阳能电池和光电元件的窗口层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication of ripple structured silicon carbide (SiC) films for nano‐grating and solar cell applications
In the present study, we aim to investigate the self‐organization of unexplored silicon carbide (SiC) film surfaces under 30 keV oblique Ar+ ions irradiation and hence unprecedented tailoring of optical and electrical characteristics with view of their uses in solar cells, gratings and nano‐ to micro‐scale devices. The surface morphology mainly consisted of triangular shaped nanoparticles which evolves into nanoscale ripple structures with an alignment parallel to the projection of ion beam direction. For the first time, we have demonstrated the fabrication of highly‐ordered ripple patterns with wavelength in visible region over SiC films and applicable as nano‐gratings. The underlying mechanism relies on the structural rearrangement due to transition of film microstructure from amorphous to mixed phase (crystalline, nano‐crystalline and amorphous) and lowering of C=C and C‐C vibration modes by the heavier Si atoms. These nanostructured silicon carbide film shows unparalleled optical (energy gap decreases from 4.60±0.4 eV to 3.16±0.2 eV) & electrical characteristics (conductivity increases from 6.6x10‐11 to 1.12x10‐3 S/m with linear I‐V behavior). Thus, we propose that ripple structured SiC films with wide band gap, high refractive index and high electrical conductivity with ohmic behaviour are promising candidates for application as window layer in solar cells and opto‐electronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
期刊最新文献
Expression of Concern: Affinity of Glycan-Modified Nanodiamonds towards Lectins and Uropathogenic Escherichia Coli Front Cover: Tailoring Energy Structure of Low-Toxic Ternary Ag−Bi−S Quantum Dots through Solution-Phase Synthesis for Quantum-Dot-Sensitized Solar Cells (ChemNanoMat 10/2024) Cover Feature: One-Pot Synthesis of Orange Emissive Carbon Dots Specific for Staining of Mitochondria in both Cancer and Non-Cancer Cells (ChemNanoMat 10/2024) Alkalized MQDs /Bi2S3 Porous Structure For Efficient Photocatalytic CO2 Reduction Optimized Tungsten Disulfide via Pyrolytic Deposition for Improved Zn-ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1