Karabi Chatterjee, Anupam Gorai, Swarnali Hait, Subrata Maity, Moni Baskey Sen, Arpita Dutta, Riya Nag, Abhijit Bera, Sanjit Sarkar, Sudip K. Saha, Abu Jahid Akhtar
{"title":"探索掺杂镍对调谐 ZnFe2O4 的带隙、电子、光电和光催化特性的影响","authors":"Karabi Chatterjee, Anupam Gorai, Swarnali Hait, Subrata Maity, Moni Baskey Sen, Arpita Dutta, Riya Nag, Abhijit Bera, Sanjit Sarkar, Sudip K. Saha, Abu Jahid Akhtar","doi":"10.1002/cnma.202400348","DOIUrl":null,"url":null,"abstract":"The exploration of semiconductor nanostructures utilizing mixed metal materials is an emerging area of study across fields including field-effect transistors, chemical sensors, photodetectors, photocatalysts, and many more. This study developed ZnFe2O4-based Schottky diodes to tune their electronic and optoelectronic characteristics through doping. Here, Ni doping facilitated the tuning of electronic properties, leading to significant increase in the rectification ratio from 238 to 1172, along with a reduction in the potential barrier height from 0.67 V to 0.65 V. This is attributed to Ni’s role as a charge carrier in ZFO, enhancing carrier concentration, confirmed by Mott–Schottky analysis. The 5 mol% Ni-doped ZFO also exhibited remarkable light sensitivity, with its rectification ratio surging to 1795 under illumination, four times that of the undoped version. Additionally, its photo-sensitivity soared to 42.46%, nearly quadrupling the undoped device’s performance, and its power gain impressively climbed to 38.4%, which is over twelvefold the undoped sample’s output. Furthermore, the diode responds strongly to optical illumination, making this structure suitable for use as a photodiode or photosensor. Apart from that by employing a doping strategy, we achieved 64.61% degradation of methylene blue dye under visible light in 120 minutes, compared to 36.85% for the undoped sample.","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Impact of Ni Doping in Tuning the Bandgap, Electronic, Optoelectronic and Photocatalytic Properties of ZnFe2O4\",\"authors\":\"Karabi Chatterjee, Anupam Gorai, Swarnali Hait, Subrata Maity, Moni Baskey Sen, Arpita Dutta, Riya Nag, Abhijit Bera, Sanjit Sarkar, Sudip K. Saha, Abu Jahid Akhtar\",\"doi\":\"10.1002/cnma.202400348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exploration of semiconductor nanostructures utilizing mixed metal materials is an emerging area of study across fields including field-effect transistors, chemical sensors, photodetectors, photocatalysts, and many more. This study developed ZnFe2O4-based Schottky diodes to tune their electronic and optoelectronic characteristics through doping. Here, Ni doping facilitated the tuning of electronic properties, leading to significant increase in the rectification ratio from 238 to 1172, along with a reduction in the potential barrier height from 0.67 V to 0.65 V. This is attributed to Ni’s role as a charge carrier in ZFO, enhancing carrier concentration, confirmed by Mott–Schottky analysis. The 5 mol% Ni-doped ZFO also exhibited remarkable light sensitivity, with its rectification ratio surging to 1795 under illumination, four times that of the undoped version. Additionally, its photo-sensitivity soared to 42.46%, nearly quadrupling the undoped device’s performance, and its power gain impressively climbed to 38.4%, which is over twelvefold the undoped sample’s output. Furthermore, the diode responds strongly to optical illumination, making this structure suitable for use as a photodiode or photosensor. Apart from that by employing a doping strategy, we achieved 64.61% degradation of methylene blue dye under visible light in 120 minutes, compared to 36.85% for the undoped sample.\",\"PeriodicalId\":54339,\"journal\":{\"name\":\"ChemNanoMat\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemNanoMat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/cnma.202400348\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/cnma.202400348","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploring the Impact of Ni Doping in Tuning the Bandgap, Electronic, Optoelectronic and Photocatalytic Properties of ZnFe2O4
The exploration of semiconductor nanostructures utilizing mixed metal materials is an emerging area of study across fields including field-effect transistors, chemical sensors, photodetectors, photocatalysts, and many more. This study developed ZnFe2O4-based Schottky diodes to tune their electronic and optoelectronic characteristics through doping. Here, Ni doping facilitated the tuning of electronic properties, leading to significant increase in the rectification ratio from 238 to 1172, along with a reduction in the potential barrier height from 0.67 V to 0.65 V. This is attributed to Ni’s role as a charge carrier in ZFO, enhancing carrier concentration, confirmed by Mott–Schottky analysis. The 5 mol% Ni-doped ZFO also exhibited remarkable light sensitivity, with its rectification ratio surging to 1795 under illumination, four times that of the undoped version. Additionally, its photo-sensitivity soared to 42.46%, nearly quadrupling the undoped device’s performance, and its power gain impressively climbed to 38.4%, which is over twelvefold the undoped sample’s output. Furthermore, the diode responds strongly to optical illumination, making this structure suitable for use as a photodiode or photosensor. Apart from that by employing a doping strategy, we achieved 64.61% degradation of methylene blue dye under visible light in 120 minutes, compared to 36.85% for the undoped sample.
ChemNanoMatEnergy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍:
ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.