基于类内约束的单类分类多任务自动编码器

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Processing Letters Pub Date : 2024-09-02 DOI:10.1007/s11063-024-11681-2
Guojie Xie, Tianlei Wang, Dekang Liu, Wandong Zhang, Xiaoping Lai
{"title":"基于类内约束的单类分类多任务自动编码器","authors":"Guojie Xie, Tianlei Wang, Dekang Liu, Wandong Zhang, Xiaoping Lai","doi":"10.1007/s11063-024-11681-2","DOIUrl":null,"url":null,"abstract":"<p>Autoencoders (AEs) have attracted much attention in one-class classification (OCC) based unsupervised anomaly detection. The AEs aim to learn the unity features on targets without involving anomalies and thus the targets are expected to obtain smaller reconstruction errors than anomalies. However, AE-based OCC algorithms may suffer from the overgeneralization of AE and fail to detect anomalies that have similar distributions to target data. To address these issues, a novel within-class constraint based multi-task AE (WC-MTAE) is proposed in this paper. WC-MTAE consists of two different task: one for reconstruction and the other for the discrimination-based OCC task. In this way, the encoder is compelled by the OCC task to learn the more compact encoded feature distribution for targets when minimizing OCC loss. Meanwhile, the within-class scatter based penalty term is constructed to further regularize the encoded feature distribution. The aforementioned two improvements enable the unsupervised anomaly detection by the compact encoded features, thereby addressing the issue of the overgeneralization in AEs. Comparisons with several state-of-the-art (SOTA) algorithms on several non-image datasets and an image dataset CIFAR10 are provided where the WC-MTAE is conducted on 3 different network structures including the multilayer perception (MLP), LeNet-type convolution network and full convolution neural network. Extensive experiments demonstrate the superior performance of the proposed WC-MTAE. The source code would be available in future.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"25 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Within-Class Constraint Based Multi-task Autoencoder for One-Class Classification\",\"authors\":\"Guojie Xie, Tianlei Wang, Dekang Liu, Wandong Zhang, Xiaoping Lai\",\"doi\":\"10.1007/s11063-024-11681-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Autoencoders (AEs) have attracted much attention in one-class classification (OCC) based unsupervised anomaly detection. The AEs aim to learn the unity features on targets without involving anomalies and thus the targets are expected to obtain smaller reconstruction errors than anomalies. However, AE-based OCC algorithms may suffer from the overgeneralization of AE and fail to detect anomalies that have similar distributions to target data. To address these issues, a novel within-class constraint based multi-task AE (WC-MTAE) is proposed in this paper. WC-MTAE consists of two different task: one for reconstruction and the other for the discrimination-based OCC task. In this way, the encoder is compelled by the OCC task to learn the more compact encoded feature distribution for targets when minimizing OCC loss. Meanwhile, the within-class scatter based penalty term is constructed to further regularize the encoded feature distribution. The aforementioned two improvements enable the unsupervised anomaly detection by the compact encoded features, thereby addressing the issue of the overgeneralization in AEs. Comparisons with several state-of-the-art (SOTA) algorithms on several non-image datasets and an image dataset CIFAR10 are provided where the WC-MTAE is conducted on 3 different network structures including the multilayer perception (MLP), LeNet-type convolution network and full convolution neural network. Extensive experiments demonstrate the superior performance of the proposed WC-MTAE. The source code would be available in future.</p>\",\"PeriodicalId\":51144,\"journal\":{\"name\":\"Neural Processing Letters\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11063-024-11681-2\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11681-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

自动编码器(AE)在基于单类分类(OCC)的无监督异常检测中备受关注。自动编码器的目的是在不涉及异常点的情况下学习目标的统一特征,因此目标有望获得比异常点更小的重构误差。然而,基于 AE 的 OCC 算法可能会受到 AE 过度泛化的影响,无法检测到与目标数据分布相似的异常点。为解决这些问题,本文提出了一种新颖的基于类内约束的多任务 AE(WC-MTAE)。WC-MTAE 包括两个不同的任务:一个是重建任务,另一个是基于判别的 OCC 任务。这样,编码器在 OCC 任务的强迫下,在最小化 OCC 损失的情况下为目标学习更紧凑的编码特征分布。同时,还构建了基于类内散点的惩罚项,以进一步规范编码特征分布。通过上述两项改进,可以利用紧凑的编码特征进行无监督异常检测,从而解决 AE 中的过度泛化问题。在几个非图像数据集和一个图像数据集 CIFAR10 上,WC-MTAE 在 3 种不同的网络结构(包括多层感知(MLP)、LeNet 型卷积网络和全卷积神经网络)上与几种最先进的(SOTA)算法进行了比较。广泛的实验证明了所提出的 WC-MTAE 的卓越性能。今后将提供源代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Within-Class Constraint Based Multi-task Autoencoder for One-Class Classification

Autoencoders (AEs) have attracted much attention in one-class classification (OCC) based unsupervised anomaly detection. The AEs aim to learn the unity features on targets without involving anomalies and thus the targets are expected to obtain smaller reconstruction errors than anomalies. However, AE-based OCC algorithms may suffer from the overgeneralization of AE and fail to detect anomalies that have similar distributions to target data. To address these issues, a novel within-class constraint based multi-task AE (WC-MTAE) is proposed in this paper. WC-MTAE consists of two different task: one for reconstruction and the other for the discrimination-based OCC task. In this way, the encoder is compelled by the OCC task to learn the more compact encoded feature distribution for targets when minimizing OCC loss. Meanwhile, the within-class scatter based penalty term is constructed to further regularize the encoded feature distribution. The aforementioned two improvements enable the unsupervised anomaly detection by the compact encoded features, thereby addressing the issue of the overgeneralization in AEs. Comparisons with several state-of-the-art (SOTA) algorithms on several non-image datasets and an image dataset CIFAR10 are provided where the WC-MTAE is conducted on 3 different network structures including the multilayer perception (MLP), LeNet-type convolution network and full convolution neural network. Extensive experiments demonstrate the superior performance of the proposed WC-MTAE. The source code would be available in future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Processing Letters
Neural Processing Letters 工程技术-计算机:人工智能
CiteScore
4.90
自引率
12.90%
发文量
392
审稿时长
2.8 months
期刊介绍: Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches. The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters
期刊最新文献
Label-Only Membership Inference Attack Based on Model Explanation A Robot Ground Medium Classification Algorithm Based on Feature Fusion and Adaptive Spatio-Temporal Cascade Networks A Deep Learning-Based Hybrid CNN-LSTM Model for Location-Aware Web Service Recommendation A Clustering Pruning Method Based on Multidimensional Channel Information A Neural Network-Based Poisson Solver for Fluid Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1