基于 GPU 的庞基因组图快速布局

Jiajie Li, Jan-Niklas Schmelzle, Yixiao Du, Simon Heumos, Andrea Guarracino, Giulia Guidi, Pjotr Prins, Erik Garrison, Zhiru Zhang
{"title":"基于 GPU 的庞基因组图快速布局","authors":"Jiajie Li, Jan-Niklas Schmelzle, Yixiao Du, Simon Heumos, Andrea Guarracino, Giulia Guidi, Pjotr Prins, Erik Garrison, Zhiru Zhang","doi":"arxiv-2409.00876","DOIUrl":null,"url":null,"abstract":"Computational Pangenomics is an emerging field that studies genetic variation\nusing a graph structure encompassing multiple genomes. Visualizing pangenome\ngraphs is vital for understanding genome diversity. Yet, handling large graphs\ncan be challenging due to the high computational demands of the graph layout\nprocess. In this work, we conduct a thorough performance characterization of a\nstate-of-the-art pangenome graph layout algorithm, revealing significant\ndata-level parallelism, which makes GPUs a promising option for compute\nacceleration. However, irregular data access and the algorithm's memory-bound\nnature present significant hurdles. To overcome these challenges, we develop a\nsolution implementing three key optimizations: a cache-friendly data layout,\ncoalesced random states, and warp merging. Additionally, we propose a\nquantitative metric for scalable evaluation of pangenome layout quality. Evaluated on 24 human whole-chromosome pangenomes, our GPU-based solution\nachieves a 57.3x speedup over the state-of-the-art multithreaded CPU baseline\nwithout layout quality loss, reducing execution time from hours to minutes.","PeriodicalId":501422,"journal":{"name":"arXiv - CS - Distributed, Parallel, and Cluster Computing","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid GPU-Based Pangenome Graph Layout\",\"authors\":\"Jiajie Li, Jan-Niklas Schmelzle, Yixiao Du, Simon Heumos, Andrea Guarracino, Giulia Guidi, Pjotr Prins, Erik Garrison, Zhiru Zhang\",\"doi\":\"arxiv-2409.00876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational Pangenomics is an emerging field that studies genetic variation\\nusing a graph structure encompassing multiple genomes. Visualizing pangenome\\ngraphs is vital for understanding genome diversity. Yet, handling large graphs\\ncan be challenging due to the high computational demands of the graph layout\\nprocess. In this work, we conduct a thorough performance characterization of a\\nstate-of-the-art pangenome graph layout algorithm, revealing significant\\ndata-level parallelism, which makes GPUs a promising option for compute\\nacceleration. However, irregular data access and the algorithm's memory-bound\\nnature present significant hurdles. To overcome these challenges, we develop a\\nsolution implementing three key optimizations: a cache-friendly data layout,\\ncoalesced random states, and warp merging. Additionally, we propose a\\nquantitative metric for scalable evaluation of pangenome layout quality. Evaluated on 24 human whole-chromosome pangenomes, our GPU-based solution\\nachieves a 57.3x speedup over the state-of-the-art multithreaded CPU baseline\\nwithout layout quality loss, reducing execution time from hours to minutes.\",\"PeriodicalId\":501422,\"journal\":{\"name\":\"arXiv - CS - Distributed, Parallel, and Cluster Computing\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Distributed, Parallel, and Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Distributed, Parallel, and Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算庞基因组学是一个新兴领域,它利用包含多个基因组的图结构研究遗传变异。可视化庞基因组图对于了解基因组多样性至关重要。然而,由于图布局过程的计算要求很高,处理大型图可能具有挑战性。在这项工作中,我们对最先进的庞基因组图布局算法进行了全面的性能鉴定,发现了显著的数据级并行性,这使得 GPU 成为计算加速的一个有前途的选择。然而,不规则的数据访问和算法的内存约束特性带来了重大障碍。为了克服这些挑战,我们开发了实现三个关键优化的解决方案:缓存友好型数据布局、凝聚随机状态和翘曲合并。此外,我们还提出了可扩展的庞基因组布局质量评估指标。我们基于 GPU 的解决方案在 24 个人类全染色体庞基因组上进行了评估,与最先进的多线程 CPU 相比,速度提高了 57.3 倍,但布局质量没有下降,执行时间从几小时缩短到几分钟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid GPU-Based Pangenome Graph Layout
Computational Pangenomics is an emerging field that studies genetic variation using a graph structure encompassing multiple genomes. Visualizing pangenome graphs is vital for understanding genome diversity. Yet, handling large graphs can be challenging due to the high computational demands of the graph layout process. In this work, we conduct a thorough performance characterization of a state-of-the-art pangenome graph layout algorithm, revealing significant data-level parallelism, which makes GPUs a promising option for compute acceleration. However, irregular data access and the algorithm's memory-bound nature present significant hurdles. To overcome these challenges, we develop a solution implementing three key optimizations: a cache-friendly data layout, coalesced random states, and warp merging. Additionally, we propose a quantitative metric for scalable evaluation of pangenome layout quality. Evaluated on 24 human whole-chromosome pangenomes, our GPU-based solution achieves a 57.3x speedup over the state-of-the-art multithreaded CPU baseline without layout quality loss, reducing execution time from hours to minutes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massively parallel CMA-ES with increasing population Communication Lower Bounds and Optimal Algorithms for Symmetric Matrix Computations Energy Efficiency Support for Software Defined Networks: a Serverless Computing Approach CountChain: A Decentralized Oracle Network for Counting Systems Delay Analysis of EIP-4844
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1