{"title":"双隙超导体 V2Ga5 的物理特性和电子结构","authors":"P.-Y. Cheng, Mohamed Oudah, T.-L. Hung, C.-E. Hsu, C.-C. Chang, J.-Y. Haung, T.-C. Liu, C.-M. Cheng, M.-N. Ou, W.-T. Chen, L. Z. Deng, C.-C. Lee, Y.-Y. Chen, C.-N. Kuo, C.-S. Lue, Janna Machts, Kenji M. Kojima, Alannah M. Hallas, C.-L. Huang","doi":"10.1103/physrevresearch.6.033253","DOIUrl":null,"url":null,"abstract":"We present a thorough investigation of the physical properties and superconductivity of the binary intermetallic <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi mathvariant=\"normal\">V</mi><mn>2</mn></msub><msub><mi>Ga</mi><mn>5</mn></msub></mrow></math>. Electrical resistivity and specific heat measurements show that <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi mathvariant=\"normal\">V</mi><mn>2</mn></msub><msub><mi>Ga</mi><mn>5</mn></msub></mrow></math> enters its superconducting state below <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>T</mi><mrow><mi>s</mi><mi>c</mi></mrow></msub><mo>=</mo></mrow></math> 3.5 K, with a critical field of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>H</mi><mrow><mrow><mi mathvariant=\"normal\">c</mi><mn>2</mn></mrow><mo>,</mo><mo>⊥</mo><mi mathvariant=\"normal\">c</mi></mrow></msub><mrow><mo>(</mo><msub><mi>H</mi><mrow><mrow><mi mathvariant=\"normal\">c</mi><mn>2</mn></mrow><mo>,</mo><mo>|</mo><mo>|</mo><mi mathvariant=\"normal\">c</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>6.5</mn><mrow><mo>(</mo><mn>4.1</mn><mo>)</mo></mrow></mrow></math> kOe. With <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>H</mi><mo>⊥</mo><mi>c</mi></mrow></math>, the peak effect was observed in resistivity measurements, indicating the ultrahigh quality of the single crystal studied. The resistivity measurements under high pressure reveal that the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mrow><mi>s</mi><mi>c</mi></mrow></msub></math> is suppressed linearly with pressure and reaches absolute zero around 20 GPa. Specific heat and muon spin relaxation measurements indicate that the two-gap <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>s</mi></math>-wave model best describes the superconductivity of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi mathvariant=\"normal\">V</mi><mn>2</mn></msub><msub><mi>Ga</mi><mn>5</mn></msub></mrow></math>. The bands near the Fermi level around the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Z</mi></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Γ</mi></math> points are observed and analyzed by the angle-resolved photoemission spectroscopy measurements and first-principles band structure calculations. We therefore conclude that <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi mathvariant=\"normal\">V</mi><mn>2</mn></msub><msub><mi>Ga</mi><mn>5</mn></msub></mrow></math> is a phonon-mediated two-gap <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>s</mi></math>-wave superconductor.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical properties and electronic structure of the two-gap superconductor V2Ga5\",\"authors\":\"P.-Y. Cheng, Mohamed Oudah, T.-L. Hung, C.-E. Hsu, C.-C. Chang, J.-Y. Haung, T.-C. Liu, C.-M. Cheng, M.-N. Ou, W.-T. Chen, L. Z. Deng, C.-C. Lee, Y.-Y. Chen, C.-N. Kuo, C.-S. Lue, Janna Machts, Kenji M. Kojima, Alannah M. Hallas, C.-L. Huang\",\"doi\":\"10.1103/physrevresearch.6.033253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a thorough investigation of the physical properties and superconductivity of the binary intermetallic <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi mathvariant=\\\"normal\\\">V</mi><mn>2</mn></msub><msub><mi>Ga</mi><mn>5</mn></msub></mrow></math>. Electrical resistivity and specific heat measurements show that <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi mathvariant=\\\"normal\\\">V</mi><mn>2</mn></msub><msub><mi>Ga</mi><mn>5</mn></msub></mrow></math> enters its superconducting state below <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>T</mi><mrow><mi>s</mi><mi>c</mi></mrow></msub><mo>=</mo></mrow></math> 3.5 K, with a critical field of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>H</mi><mrow><mrow><mi mathvariant=\\\"normal\\\">c</mi><mn>2</mn></mrow><mo>,</mo><mo>⊥</mo><mi mathvariant=\\\"normal\\\">c</mi></mrow></msub><mrow><mo>(</mo><msub><mi>H</mi><mrow><mrow><mi mathvariant=\\\"normal\\\">c</mi><mn>2</mn></mrow><mo>,</mo><mo>|</mo><mo>|</mo><mi mathvariant=\\\"normal\\\">c</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>6.5</mn><mrow><mo>(</mo><mn>4.1</mn><mo>)</mo></mrow></mrow></math> kOe. With <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>H</mi><mo>⊥</mo><mi>c</mi></mrow></math>, the peak effect was observed in resistivity measurements, indicating the ultrahigh quality of the single crystal studied. The resistivity measurements under high pressure reveal that the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>T</mi><mrow><mi>s</mi><mi>c</mi></mrow></msub></math> is suppressed linearly with pressure and reaches absolute zero around 20 GPa. Specific heat and muon spin relaxation measurements indicate that the two-gap <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>s</mi></math>-wave model best describes the superconductivity of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi mathvariant=\\\"normal\\\">V</mi><mn>2</mn></msub><msub><mi>Ga</mi><mn>5</mn></msub></mrow></math>. The bands near the Fermi level around the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Z</mi></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">Γ</mi></math> points are observed and analyzed by the angle-resolved photoemission spectroscopy measurements and first-principles band structure calculations. We therefore conclude that <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi mathvariant=\\\"normal\\\">V</mi><mn>2</mn></msub><msub><mi>Ga</mi><mn>5</mn></msub></mrow></math> is a phonon-mediated two-gap <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>s</mi></math>-wave superconductor.\",\"PeriodicalId\":20546,\"journal\":{\"name\":\"Physical Review Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevresearch.6.033253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.033253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们对二元金属间化合物 V2Ga5 的物理性质和超导性进行了深入研究。电阻率和比热测量结果表明,V2Ga5 在 Tsc= 3.5 K 以下进入超导状态,临界磁场为 Hc2,⊥c(Hc2,||c)=6.5(4.1) kOe。在 H⊥c 条件下,电阻率测量出现了峰值效应,这表明所研究的单晶体具有超高的质量。高压下的电阻率测量结果表明,Tsc 随压力的增加呈线性抑制,在 20 GPa 左右达到绝对零度。比热和μ介子自旋弛豫测量结果表明,双间隙 s 波模型最能描述 V2Ga5 的超导性。通过角度分辨光发射光谱测量和第一原理带状结构计算,我们观察并分析了费米级附近围绕 Z 点和Γ点的带。因此,我们得出结论:V2Ga5 是一种声子介导的双间隙 s 波超导体。
Physical properties and electronic structure of the two-gap superconductor V2Ga5
We present a thorough investigation of the physical properties and superconductivity of the binary intermetallic . Electrical resistivity and specific heat measurements show that enters its superconducting state below 3.5 K, with a critical field of kOe. With , the peak effect was observed in resistivity measurements, indicating the ultrahigh quality of the single crystal studied. The resistivity measurements under high pressure reveal that the is suppressed linearly with pressure and reaches absolute zero around 20 GPa. Specific heat and muon spin relaxation measurements indicate that the two-gap -wave model best describes the superconductivity of . The bands near the Fermi level around the and points are observed and analyzed by the angle-resolved photoemission spectroscopy measurements and first-principles band structure calculations. We therefore conclude that is a phonon-mediated two-gap -wave superconductor.