通过资源效率型注意力神经网络增强量子态层析成像技术

Adriano Macarone Palmieri, Guillem Müller-Rigat, Anubhav Kumar Srivastava, Maciej Lewenstein, Grzegorz Rajchel-Mieldzioć, Marcin Płodzień
{"title":"通过资源效率型注意力神经网络增强量子态层析成像技术","authors":"Adriano Macarone Palmieri, Guillem Müller-Rigat, Anubhav Kumar Srivastava, Maciej Lewenstein, Grzegorz Rajchel-Mieldzioć, Marcin Płodzień","doi":"10.1103/physrevresearch.6.033248","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method for denoising experimental density matrices that combines standard quantum state tomography with an attention-based neural network architecture. The algorithm learns the noise from the data itself, without <i>a priori</i> knowledge of its sources. Firstly, we show how the proposed protocol can improve the averaged fidelity of reconstruction over linear inversion and maximum likelihood estimation in the finite-statistics regime, reducing at least by an order of magnitude the amount of necessary training data. Next, we demonstrate its use for out-of-distribution data in realistic scenarios. In particular, we consider squeezed states of few spins in the presence of depolarizing noise and measurement/calibration errors and certify its metrologically useful entanglement content. The protocol introduced here targets experiments involving few degrees of freedom and afflicted by a significant amount of unspecified noise. These include NISQ devices and platforms such as trapped ions or photonic qudits.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing quantum state tomography via resource-efficient attention-based neural networks\",\"authors\":\"Adriano Macarone Palmieri, Guillem Müller-Rigat, Anubhav Kumar Srivastava, Maciej Lewenstein, Grzegorz Rajchel-Mieldzioć, Marcin Płodzień\",\"doi\":\"10.1103/physrevresearch.6.033248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a method for denoising experimental density matrices that combines standard quantum state tomography with an attention-based neural network architecture. The algorithm learns the noise from the data itself, without <i>a priori</i> knowledge of its sources. Firstly, we show how the proposed protocol can improve the averaged fidelity of reconstruction over linear inversion and maximum likelihood estimation in the finite-statistics regime, reducing at least by an order of magnitude the amount of necessary training data. Next, we demonstrate its use for out-of-distribution data in realistic scenarios. In particular, we consider squeezed states of few spins in the presence of depolarizing noise and measurement/calibration errors and certify its metrologically useful entanglement content. The protocol introduced here targets experiments involving few degrees of freedom and afflicted by a significant amount of unspecified noise. These include NISQ devices and platforms such as trapped ions or photonic qudits.\",\"PeriodicalId\":20546,\"journal\":{\"name\":\"Physical Review Research\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevresearch.6.033248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.033248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种对实验密度矩阵去噪的方法,它将标准量子态层析成像与基于注意力的神经网络架构相结合。该算法从数据本身学习噪声,而无需先验地了解其来源。首先,我们展示了在有限统计机制下,与线性反演和最大似然估计相比,所提出的协议如何提高重建的平均保真度,将所需的训练数据量至少减少一个数量级。接下来,我们演示了该方法在现实场景中对分布外数据的应用。特别是,我们考虑了在存在去极化噪声和测量/校准误差的情况下少数自旋的挤压态,并证明了其在计量学上有用的纠缠内容。这里介绍的协议针对的是涉及少数自由度并受到大量未指定噪声影响的实验。这些实验包括 NISQ 设备和平台,如被困离子或光子量子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing quantum state tomography via resource-efficient attention-based neural networks
In this paper, we propose a method for denoising experimental density matrices that combines standard quantum state tomography with an attention-based neural network architecture. The algorithm learns the noise from the data itself, without a priori knowledge of its sources. Firstly, we show how the proposed protocol can improve the averaged fidelity of reconstruction over linear inversion and maximum likelihood estimation in the finite-statistics regime, reducing at least by an order of magnitude the amount of necessary training data. Next, we demonstrate its use for out-of-distribution data in realistic scenarios. In particular, we consider squeezed states of few spins in the presence of depolarizing noise and measurement/calibration errors and certify its metrologically useful entanglement content. The protocol introduced here targets experiments involving few degrees of freedom and afflicted by a significant amount of unspecified noise. These include NISQ devices and platforms such as trapped ions or photonic qudits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
期刊最新文献
Explosive percolation in finite dimensions Iterative site percolation on triangular lattice Hydrodynamic hovering of swimming bacteria above surfaces Comparison of estimation limits for quantum two-parameter estimation Measurements of extended magnetic fields in laser-solid interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1