利用能量收集对边缘网络进行分散式 LLM 推断

Aria Khoshsirat, Giovanni Perin, Michele Rossi
{"title":"利用能量收集对边缘网络进行分散式 LLM 推断","authors":"Aria Khoshsirat, Giovanni Perin, Michele Rossi","doi":"arxiv-2408.15907","DOIUrl":null,"url":null,"abstract":"Large language models have significantly transformed multiple fields with\ntheir exceptional performance in natural language tasks, but their deployment\nin resource-constrained environments like edge networks presents an ongoing\nchallenge. Decentralized techniques for inference have emerged, distributing\nthe model blocks among multiple devices to improve flexibility and cost\neffectiveness. However, energy limitations remain a significant concern for\nedge devices. We propose a sustainable model for collaborative inference on\ninterconnected, battery-powered edge devices with energy harvesting. A\nsemi-Markov model is developed to describe the states of the devices,\nconsidering processing parameters and average green energy arrivals. This\ninforms the design of scheduling algorithms that aim to minimize device\ndowntimes and maximize network throughput. Through empirical evaluations and\nsimulated runs, we validate the effectiveness of our approach, paving the way\nfor energy-efficient decentralized inference over edge networks.","PeriodicalId":501422,"journal":{"name":"arXiv - CS - Distributed, Parallel, and Cluster Computing","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decentralized LLM Inference over Edge Networks with Energy Harvesting\",\"authors\":\"Aria Khoshsirat, Giovanni Perin, Michele Rossi\",\"doi\":\"arxiv-2408.15907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large language models have significantly transformed multiple fields with\\ntheir exceptional performance in natural language tasks, but their deployment\\nin resource-constrained environments like edge networks presents an ongoing\\nchallenge. Decentralized techniques for inference have emerged, distributing\\nthe model blocks among multiple devices to improve flexibility and cost\\neffectiveness. However, energy limitations remain a significant concern for\\nedge devices. We propose a sustainable model for collaborative inference on\\ninterconnected, battery-powered edge devices with energy harvesting. A\\nsemi-Markov model is developed to describe the states of the devices,\\nconsidering processing parameters and average green energy arrivals. This\\ninforms the design of scheduling algorithms that aim to minimize device\\ndowntimes and maximize network throughput. Through empirical evaluations and\\nsimulated runs, we validate the effectiveness of our approach, paving the way\\nfor energy-efficient decentralized inference over edge networks.\",\"PeriodicalId\":501422,\"journal\":{\"name\":\"arXiv - CS - Distributed, Parallel, and Cluster Computing\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Distributed, Parallel, and Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Distributed, Parallel, and Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型在自然语言任务中的卓越表现极大地改变了多个领域,但在边缘网络等资源受限的环境中部署这些模型仍是一项挑战。分散式推理技术已经出现,它将模型块分配给多个设备,以提高灵活性和成本效益。然而,能源限制仍然是边缘设备面临的一个重大问题。我们提出了一种可持续模型,用于在互联的、由电池供电的边缘设备上通过能量收集进行协作推理。考虑到处理参数和平均绿色能源到达量,我们开发了一个马尔可夫模型来描述设备的状态。这为调度算法的设计提供了依据,调度算法的目标是最大限度地减少设备掉电时间,最大限度地提高网络吞吐量。通过经验评估和模拟运行,我们验证了我们方法的有效性,为在边缘网络上实现高能效分散推理铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decentralized LLM Inference over Edge Networks with Energy Harvesting
Large language models have significantly transformed multiple fields with their exceptional performance in natural language tasks, but their deployment in resource-constrained environments like edge networks presents an ongoing challenge. Decentralized techniques for inference have emerged, distributing the model blocks among multiple devices to improve flexibility and cost effectiveness. However, energy limitations remain a significant concern for edge devices. We propose a sustainable model for collaborative inference on interconnected, battery-powered edge devices with energy harvesting. A semi-Markov model is developed to describe the states of the devices, considering processing parameters and average green energy arrivals. This informs the design of scheduling algorithms that aim to minimize device downtimes and maximize network throughput. Through empirical evaluations and simulated runs, we validate the effectiveness of our approach, paving the way for energy-efficient decentralized inference over edge networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massively parallel CMA-ES with increasing population Communication Lower Bounds and Optimal Algorithms for Symmetric Matrix Computations Energy Efficiency Support for Software Defined Networks: a Serverless Computing Approach CountChain: A Decentralized Oracle Network for Counting Systems Delay Analysis of EIP-4844
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1