实现云原生科学工作流程管理

Michal Orzechowski, Bartosz Balis, Krzysztof Janecki
{"title":"实现云原生科学工作流程管理","authors":"Michal Orzechowski, Bartosz Balis, Krzysztof Janecki","doi":"arxiv-2408.15445","DOIUrl":null,"url":null,"abstract":"Cloud-native is an approach to building and running scalable applications in\nmodern cloud infrastructures, with the Kubernetes container orchestration\nplatform being often considered as a fundamental cloud-native building block.\nIn this paper, we evaluate alternative execution models for scientific\nworkflows in Kubernetes. We compare the simplest job-based model, its variant\nwith task clustering, and finally we propose a cloud-native model based on\nmicroservices comprising auto-scalable worker-pools. We implement the proposed\nmodels in the HyperFlow workflow management system, and evaluate them using a\nlarge Montage workflow on a Kubernetes cluster. The results indicate that the\nproposed cloud-native worker-pools execution model achieves best performance in\nterms of average cluster utilization, resulting in a nearly 20\\% improvement of\nthe workflow makespan compared to the best-performing job-based model. However,\nbetter performance comes at the cost of significantly higher complexity of the\nimplementation and maintenance. We believe that our experiments provide a\nvaluable insight into the performance, advantages and disadvantages of\nalternative cloud-native execution models for scientific workflows.","PeriodicalId":501422,"journal":{"name":"arXiv - CS - Distributed, Parallel, and Cluster Computing","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards cloud-native scientific workflow management\",\"authors\":\"Michal Orzechowski, Bartosz Balis, Krzysztof Janecki\",\"doi\":\"arxiv-2408.15445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud-native is an approach to building and running scalable applications in\\nmodern cloud infrastructures, with the Kubernetes container orchestration\\nplatform being often considered as a fundamental cloud-native building block.\\nIn this paper, we evaluate alternative execution models for scientific\\nworkflows in Kubernetes. We compare the simplest job-based model, its variant\\nwith task clustering, and finally we propose a cloud-native model based on\\nmicroservices comprising auto-scalable worker-pools. We implement the proposed\\nmodels in the HyperFlow workflow management system, and evaluate them using a\\nlarge Montage workflow on a Kubernetes cluster. The results indicate that the\\nproposed cloud-native worker-pools execution model achieves best performance in\\nterms of average cluster utilization, resulting in a nearly 20\\\\% improvement of\\nthe workflow makespan compared to the best-performing job-based model. However,\\nbetter performance comes at the cost of significantly higher complexity of the\\nimplementation and maintenance. We believe that our experiments provide a\\nvaluable insight into the performance, advantages and disadvantages of\\nalternative cloud-native execution models for scientific workflows.\",\"PeriodicalId\":501422,\"journal\":{\"name\":\"arXiv - CS - Distributed, Parallel, and Cluster Computing\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Distributed, Parallel, and Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Distributed, Parallel, and Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

云原生是一种在现代云基础设施中构建和运行可扩展应用程序的方法,Kubernetes容器编排平台通常被视为云原生的基本构建模块。在本文中,我们评估了Kubernetes中科学工作流的替代执行模型。我们比较了最简单的基于作业的模型、其带有任务集群的变体,最后我们提出了一种基于微服务的云原生模型,该模型由可自动扩展的工作池组成。我们在 HyperFlow 工作流管理系统中实现了所提出的模型,并使用 Kubernetes 集群上的大型 Montage 工作流对其进行了评估。结果表明,提出的云原生工作池执行模型在集群平均利用率方面达到了最佳性能,与性能最佳的基于作业的模型相比,工作流的时间跨度提高了近20%。然而,更好的性能是以大大提高实施和维护的复杂性为代价的。我们相信,我们的实验为科学工作流的性能、其他云原生执行模型的优缺点提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards cloud-native scientific workflow management
Cloud-native is an approach to building and running scalable applications in modern cloud infrastructures, with the Kubernetes container orchestration platform being often considered as a fundamental cloud-native building block. In this paper, we evaluate alternative execution models for scientific workflows in Kubernetes. We compare the simplest job-based model, its variant with task clustering, and finally we propose a cloud-native model based on microservices comprising auto-scalable worker-pools. We implement the proposed models in the HyperFlow workflow management system, and evaluate them using a large Montage workflow on a Kubernetes cluster. The results indicate that the proposed cloud-native worker-pools execution model achieves best performance in terms of average cluster utilization, resulting in a nearly 20\% improvement of the workflow makespan compared to the best-performing job-based model. However, better performance comes at the cost of significantly higher complexity of the implementation and maintenance. We believe that our experiments provide a valuable insight into the performance, advantages and disadvantages of alternative cloud-native execution models for scientific workflows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massively parallel CMA-ES with increasing population Communication Lower Bounds and Optimal Algorithms for Symmetric Matrix Computations Energy Efficiency Support for Software Defined Networks: a Serverless Computing Approach CountChain: A Decentralized Oracle Network for Counting Systems Delay Analysis of EIP-4844
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1