实现科学应用的可观测性

Bartosz Balis, Konrad Czerepak, Albert Kuzma, Jan Meizner, Lukasz Wronski
{"title":"实现科学应用的可观测性","authors":"Bartosz Balis, Konrad Czerepak, Albert Kuzma, Jan Meizner, Lukasz Wronski","doi":"arxiv-2408.15439","DOIUrl":null,"url":null,"abstract":"As software systems increase in complexity, conventional monitoring methods\nstruggle to provide a comprehensive overview or identify performance issues,\noften missing unexpected problems. Observability, however, offers a holistic\napproach, providing methods and tools that gather and analyze detailed\ntelemetry data to uncover hidden issues. Originally developed for cloud-native\nsystems, modern observability is less prevalent in scientific computing,\nparticularly in HPC clusters, due to differences in application architecture,\nexecution environments, and technology stacks. This paper proposes and\nevaluates an end-to-end observability solution tailored for scientific\ncomputing in HPC environments. We address several challenges, including\ncollection of application-level metrics, instrumentation, context propagation,\nand tracing. We argue that typical dashboards with charts are not sufficient\nfor advanced observability-driven analysis of scientific applications.\nConsequently, we propose a different approach based on data analysis using\nDataFrames and a Jupyter environment. The proposed solution is implemented and\nevaluated on two medical scientific pipelines running on an HPC cluster.","PeriodicalId":501422,"journal":{"name":"arXiv - CS - Distributed, Parallel, and Cluster Computing","volume":"177 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards observability of scientific applications\",\"authors\":\"Bartosz Balis, Konrad Czerepak, Albert Kuzma, Jan Meizner, Lukasz Wronski\",\"doi\":\"arxiv-2408.15439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As software systems increase in complexity, conventional monitoring methods\\nstruggle to provide a comprehensive overview or identify performance issues,\\noften missing unexpected problems. Observability, however, offers a holistic\\napproach, providing methods and tools that gather and analyze detailed\\ntelemetry data to uncover hidden issues. Originally developed for cloud-native\\nsystems, modern observability is less prevalent in scientific computing,\\nparticularly in HPC clusters, due to differences in application architecture,\\nexecution environments, and technology stacks. This paper proposes and\\nevaluates an end-to-end observability solution tailored for scientific\\ncomputing in HPC environments. We address several challenges, including\\ncollection of application-level metrics, instrumentation, context propagation,\\nand tracing. We argue that typical dashboards with charts are not sufficient\\nfor advanced observability-driven analysis of scientific applications.\\nConsequently, we propose a different approach based on data analysis using\\nDataFrames and a Jupyter environment. The proposed solution is implemented and\\nevaluated on two medical scientific pipelines running on an HPC cluster.\",\"PeriodicalId\":501422,\"journal\":{\"name\":\"arXiv - CS - Distributed, Parallel, and Cluster Computing\",\"volume\":\"177 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Distributed, Parallel, and Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Distributed, Parallel, and Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着软件系统复杂性的增加,传统的监控方法难以提供全面的概览或识别性能问题,往往会遗漏一些意想不到的问题。然而,可观察性提供了一种整体方法,它提供了收集和分析详细跟踪数据的方法和工具,以发现隐藏的问题。现代可观测性最初是为云原生系统开发的,但由于应用架构、执行环境和技术栈的差异,它在科学计算领域,尤其是高性能计算集群中的应用并不普遍。本文提出并评估了一种为 HPC 环境中的科学计算量身定制的端到端可观测性解决方案。我们解决了几个难题,包括应用级指标的收集、仪表化、上下文传播和跟踪。因此,我们提出了一种基于使用数据框架和 Jupyter 环境进行数据分析的不同方法。我们在高性能计算集群上运行的两个医学科学流水线上实施并评估了所提出的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards observability of scientific applications
As software systems increase in complexity, conventional monitoring methods struggle to provide a comprehensive overview or identify performance issues, often missing unexpected problems. Observability, however, offers a holistic approach, providing methods and tools that gather and analyze detailed telemetry data to uncover hidden issues. Originally developed for cloud-native systems, modern observability is less prevalent in scientific computing, particularly in HPC clusters, due to differences in application architecture, execution environments, and technology stacks. This paper proposes and evaluates an end-to-end observability solution tailored for scientific computing in HPC environments. We address several challenges, including collection of application-level metrics, instrumentation, context propagation, and tracing. We argue that typical dashboards with charts are not sufficient for advanced observability-driven analysis of scientific applications. Consequently, we propose a different approach based on data analysis using DataFrames and a Jupyter environment. The proposed solution is implemented and evaluated on two medical scientific pipelines running on an HPC cluster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massively parallel CMA-ES with increasing population Communication Lower Bounds and Optimal Algorithms for Symmetric Matrix Computations Energy Efficiency Support for Software Defined Networks: a Serverless Computing Approach CountChain: A Decentralized Oracle Network for Counting Systems Delay Analysis of EIP-4844
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1