Axel Leblanc, Chotivut Tangchingchai, Zahra Sadre Momtaz, Elyjah Kiyooka, Jean-Michel Hartmann, Gonzalo Troncoso Fernandez-Bada, Zoltán Scherübl, Boris Brun, Vivien Schmitt, Simon Zihlmann, Romain Maurand, Étienne Dumur, Silvano De Franceschi, François Lefloch
{"title":"具有可调谐波含量的 Ge 基约瑟夫森器件中的非互惠到电荷-4e 超电流","authors":"Axel Leblanc, Chotivut Tangchingchai, Zahra Sadre Momtaz, Elyjah Kiyooka, Jean-Michel Hartmann, Gonzalo Troncoso Fernandez-Bada, Zoltán Scherübl, Boris Brun, Vivien Schmitt, Simon Zihlmann, Romain Maurand, Étienne Dumur, Silvano De Franceschi, François Lefloch","doi":"10.1103/physrevresearch.6.033281","DOIUrl":null,"url":null,"abstract":"Hybrid superconductor(S)-semiconductor(Sm) devices bring a range of functionalities into superconducting circuits. In particular, hybrid parity-protected qubits and Josephson diodes were recently proposed and experimentally demonstrated. Such devices leverage the nonsinusoidal character of the Josephson current-phase relation (CPR) in highly transparent S-Sm-S junctions. Here, we report an experimental study of superconducting quantum-interference devices (SQUIDs) embedding Josephson field-effect transistors fabricated from a SiGe/Ge/SiGe heterostructure grown on a 200-mm silicon wafer. The single-junction CPR shows up to three harmonics with gate-tunable amplitude. In the presence of microwave irradiation, the ratio of the first two dominant harmonics, corresponding to single and double Cooper-pair transport processes, is consistently reflected in relative weight of integer and half-integer Shapiro steps. A combination of magnetic-flux and gate-voltage control enables tuning the SQUID functionality from a nonreciprocal Josephson-diode regime with 27% asymmetry to a <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>π</mi></math>-periodic Josephson regime suitable for the implementation of parity-protected superconducting qubits. These results illustrate the potential of Ge-based hybrid devices as versatile and scalable building blocks of superconducting quantum circuits.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From nonreciprocal to charge-4e supercurrent in Ge-based Josephson devices with tunable harmonic content\",\"authors\":\"Axel Leblanc, Chotivut Tangchingchai, Zahra Sadre Momtaz, Elyjah Kiyooka, Jean-Michel Hartmann, Gonzalo Troncoso Fernandez-Bada, Zoltán Scherübl, Boris Brun, Vivien Schmitt, Simon Zihlmann, Romain Maurand, Étienne Dumur, Silvano De Franceschi, François Lefloch\",\"doi\":\"10.1103/physrevresearch.6.033281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid superconductor(S)-semiconductor(Sm) devices bring a range of functionalities into superconducting circuits. In particular, hybrid parity-protected qubits and Josephson diodes were recently proposed and experimentally demonstrated. Such devices leverage the nonsinusoidal character of the Josephson current-phase relation (CPR) in highly transparent S-Sm-S junctions. Here, we report an experimental study of superconducting quantum-interference devices (SQUIDs) embedding Josephson field-effect transistors fabricated from a SiGe/Ge/SiGe heterostructure grown on a 200-mm silicon wafer. The single-junction CPR shows up to three harmonics with gate-tunable amplitude. In the presence of microwave irradiation, the ratio of the first two dominant harmonics, corresponding to single and double Cooper-pair transport processes, is consistently reflected in relative weight of integer and half-integer Shapiro steps. A combination of magnetic-flux and gate-voltage control enables tuning the SQUID functionality from a nonreciprocal Josephson-diode regime with 27% asymmetry to a <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>π</mi></math>-periodic Josephson regime suitable for the implementation of parity-protected superconducting qubits. These results illustrate the potential of Ge-based hybrid devices as versatile and scalable building blocks of superconducting quantum circuits.\",\"PeriodicalId\":20546,\"journal\":{\"name\":\"Physical Review Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevresearch.6.033281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.033281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
From nonreciprocal to charge-4e supercurrent in Ge-based Josephson devices with tunable harmonic content
Hybrid superconductor(S)-semiconductor(Sm) devices bring a range of functionalities into superconducting circuits. In particular, hybrid parity-protected qubits and Josephson diodes were recently proposed and experimentally demonstrated. Such devices leverage the nonsinusoidal character of the Josephson current-phase relation (CPR) in highly transparent S-Sm-S junctions. Here, we report an experimental study of superconducting quantum-interference devices (SQUIDs) embedding Josephson field-effect transistors fabricated from a SiGe/Ge/SiGe heterostructure grown on a 200-mm silicon wafer. The single-junction CPR shows up to three harmonics with gate-tunable amplitude. In the presence of microwave irradiation, the ratio of the first two dominant harmonics, corresponding to single and double Cooper-pair transport processes, is consistently reflected in relative weight of integer and half-integer Shapiro steps. A combination of magnetic-flux and gate-voltage control enables tuning the SQUID functionality from a nonreciprocal Josephson-diode regime with 27% asymmetry to a -periodic Josephson regime suitable for the implementation of parity-protected superconducting qubits. These results illustrate the potential of Ge-based hybrid devices as versatile and scalable building blocks of superconducting quantum circuits.