重新审视 AllReduce 的时间成本模型

Dian Xiong, Li Chen, Youhe Jiang, Dan Li, Shuai Wang, Songtao Wang
{"title":"重新审视 AllReduce 的时间成本模型","authors":"Dian Xiong, Li Chen, Youhe Jiang, Dan Li, Shuai Wang, Songtao Wang","doi":"arxiv-2409.04202","DOIUrl":null,"url":null,"abstract":"AllReduce is an important and popular collective communication primitive,\nwhich has been widely used in areas such as distributed machine learning and\nhigh performance computing. To design, analyze, and choose from various\nalgorithms and implementations of AllReduce, the time cost model plays a\ncrucial role, and the predominant one is the $(\\alpha,\\beta,\\gamma)$ model. In\nthis paper, we revisit this model, and reveal that it cannot well characterize\nthe time cost of AllReduce on modern clusters; thus must be updated. We perform\nextensive measurements to identify two additional terms contributing to the\ntime cost: the incast term and the memory access term. We augment the\n$(\\alpha,\\beta,\\gamma)$ model with these two terms, and present GenModel as a\nresult. Using GenModel, we discover two new optimalities for AllReduce\nalgorithms, and prove that they cannot be achieved simultaneously. Finally,\nstriking the balance between the two new optimalities, we design GenTree, an\nAllReduce plan generation algorithm specialized for tree-like topologies.\nExperiments on a real testbed with 64 GPUs show that GenTree can achieve\n1.22$\\times$ to 1.65$\\times$ speed-up against NCCL. Large-scale simulations\nalso confirm that GenTree can improve the state-of-the-art AllReduce algorithm\nby a factor of $1.2$ to $7.4$ in scenarios where the two new terms dominate.","PeriodicalId":501422,"journal":{"name":"arXiv - CS - Distributed, Parallel, and Cluster Computing","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting the Time Cost Model of AllReduce\",\"authors\":\"Dian Xiong, Li Chen, Youhe Jiang, Dan Li, Shuai Wang, Songtao Wang\",\"doi\":\"arxiv-2409.04202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AllReduce is an important and popular collective communication primitive,\\nwhich has been widely used in areas such as distributed machine learning and\\nhigh performance computing. To design, analyze, and choose from various\\nalgorithms and implementations of AllReduce, the time cost model plays a\\ncrucial role, and the predominant one is the $(\\\\alpha,\\\\beta,\\\\gamma)$ model. In\\nthis paper, we revisit this model, and reveal that it cannot well characterize\\nthe time cost of AllReduce on modern clusters; thus must be updated. We perform\\nextensive measurements to identify two additional terms contributing to the\\ntime cost: the incast term and the memory access term. We augment the\\n$(\\\\alpha,\\\\beta,\\\\gamma)$ model with these two terms, and present GenModel as a\\nresult. Using GenModel, we discover two new optimalities for AllReduce\\nalgorithms, and prove that they cannot be achieved simultaneously. Finally,\\nstriking the balance between the two new optimalities, we design GenTree, an\\nAllReduce plan generation algorithm specialized for tree-like topologies.\\nExperiments on a real testbed with 64 GPUs show that GenTree can achieve\\n1.22$\\\\times$ to 1.65$\\\\times$ speed-up against NCCL. Large-scale simulations\\nalso confirm that GenTree can improve the state-of-the-art AllReduce algorithm\\nby a factor of $1.2$ to $7.4$ in scenarios where the two new terms dominate.\",\"PeriodicalId\":501422,\"journal\":{\"name\":\"arXiv - CS - Distributed, Parallel, and Cluster Computing\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Distributed, Parallel, and Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Distributed, Parallel, and Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

AllReduce 是一种重要而流行的集体通信基元,已广泛应用于分布式机器学习和高性能计算等领域。在设计、分析和选择 AllReduce 的各种算法和实现时,时间成本模型起着至关重要的作用,其中最主要的是 $(α,\beta,\gamma)$ 模型。在本文中,我们重新审视了这个模型,发现它不能很好地描述现代集群上 AllReduce 的时间成本,因此必须更新。我们进行了广泛的测量,确定了导致时间成本的两个附加项:incast 项和内存访问项。我们用这两个项扩充了$(\alpha,\beta,\gamma)$ 模型,并将 GenModel 作为结果呈现。利用 GenModel,我们为 AllReduce 算法发现了两个新的最优性,并证明它们不能同时实现。最后,为了在这两个新的最优性之间取得平衡,我们设计了专门针对树状拓扑的AllReduce计划生成算法--GenTree。在使用64个GPU的真实测试平台上进行的实验表明,GenTree的速度比NCCL提高了1.22倍到1.65倍。大规模模拟也证实,在两个新项占主导地位的情况下,GenTree 可以将最先进的 AllReduce 算法提高 1.2 美元到 7.4 美元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Revisiting the Time Cost Model of AllReduce
AllReduce is an important and popular collective communication primitive, which has been widely used in areas such as distributed machine learning and high performance computing. To design, analyze, and choose from various algorithms and implementations of AllReduce, the time cost model plays a crucial role, and the predominant one is the $(\alpha,\beta,\gamma)$ model. In this paper, we revisit this model, and reveal that it cannot well characterize the time cost of AllReduce on modern clusters; thus must be updated. We perform extensive measurements to identify two additional terms contributing to the time cost: the incast term and the memory access term. We augment the $(\alpha,\beta,\gamma)$ model with these two terms, and present GenModel as a result. Using GenModel, we discover two new optimalities for AllReduce algorithms, and prove that they cannot be achieved simultaneously. Finally, striking the balance between the two new optimalities, we design GenTree, an AllReduce plan generation algorithm specialized for tree-like topologies. Experiments on a real testbed with 64 GPUs show that GenTree can achieve 1.22$\times$ to 1.65$\times$ speed-up against NCCL. Large-scale simulations also confirm that GenTree can improve the state-of-the-art AllReduce algorithm by a factor of $1.2$ to $7.4$ in scenarios where the two new terms dominate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massively parallel CMA-ES with increasing population Communication Lower Bounds and Optimal Algorithms for Symmetric Matrix Computations Energy Efficiency Support for Software Defined Networks: a Serverless Computing Approach CountChain: A Decentralized Oracle Network for Counting Systems Delay Analysis of EIP-4844
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1