基于多粒度评分的生成框架实现了复杂有机物的高效逆向设计

Zijun Chen, Yu Wang, Liuzhenghao Lv, Hao Li, Zongying Lin, Li Yuan, Yonghong Tian
{"title":"基于多粒度评分的生成框架实现了复杂有机物的高效逆向设计","authors":"Zijun Chen, Yu Wang, Liuzhenghao Lv, Hao Li, Zongying Lin, Li Yuan, Yonghong Tian","doi":"arxiv-2409.07912","DOIUrl":null,"url":null,"abstract":"Efficiently retrieving an enormous chemical library to design targeted\nmolecules is crucial for accelerating drug discovery, organic chemistry, and\noptoelectronic materials. Despite the emergence of generative models to produce\nnovel drug-like molecules, in a more realistic scenario, the complexity of\nfunctional groups (e.g., pyrene, acenaphthylene, and bridged-ring systems) and\nextensive molecular scaffolds remain challenging obstacles for the generation\nof complex organics. Traditionally, the former demands an extra learning\nprocess, e.g., molecular pre-training, and the latter requires expensive\ncomputational resources. To address these challenges, we propose OrgMol-Design,\na multi-granularity framework for efficiently designing complex organics. Our\nOrgMol-Design is composed of a score-based generative model via fragment prior\nfor diverse coarse-grained scaffold generation and a chemical-rule-aware\nscoring model for fine-grained molecular structure design, circumventing the\ndifficulty of intricate substructure learning without losing connection details\namong fragments. Our approach achieves state-of-the-art performance in four\nreal-world and more challenging benchmarks covering broader scientific domains,\noutperforming advanced molecule generative models. Additionally, it delivers a\nsubstantial speedup and graphics memory reduction compared to diffusion-based\ngraph models. Our results also demonstrate the importance of leveraging\nfragment prior for a generalized molecule inverse design model.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-granularity Score-based Generative Framework Enables Efficient Inverse Design of Complex Organics\",\"authors\":\"Zijun Chen, Yu Wang, Liuzhenghao Lv, Hao Li, Zongying Lin, Li Yuan, Yonghong Tian\",\"doi\":\"arxiv-2409.07912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficiently retrieving an enormous chemical library to design targeted\\nmolecules is crucial for accelerating drug discovery, organic chemistry, and\\noptoelectronic materials. Despite the emergence of generative models to produce\\nnovel drug-like molecules, in a more realistic scenario, the complexity of\\nfunctional groups (e.g., pyrene, acenaphthylene, and bridged-ring systems) and\\nextensive molecular scaffolds remain challenging obstacles for the generation\\nof complex organics. Traditionally, the former demands an extra learning\\nprocess, e.g., molecular pre-training, and the latter requires expensive\\ncomputational resources. To address these challenges, we propose OrgMol-Design,\\na multi-granularity framework for efficiently designing complex organics. Our\\nOrgMol-Design is composed of a score-based generative model via fragment prior\\nfor diverse coarse-grained scaffold generation and a chemical-rule-aware\\nscoring model for fine-grained molecular structure design, circumventing the\\ndifficulty of intricate substructure learning without losing connection details\\namong fragments. Our approach achieves state-of-the-art performance in four\\nreal-world and more challenging benchmarks covering broader scientific domains,\\noutperforming advanced molecule generative models. Additionally, it delivers a\\nsubstantial speedup and graphics memory reduction compared to diffusion-based\\ngraph models. Our results also demonstrate the importance of leveraging\\nfragment prior for a generalized molecule inverse design model.\",\"PeriodicalId\":501309,\"journal\":{\"name\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高效检索庞大的化学库以设计有针对性的分子,对于加速药物发现、有机化学和光电材料至关重要。尽管出现了生成模型来生产类似药物的新分子,但在更现实的情况下,功能基团(如芘、苊和桥环系统)的复杂性和广泛的分子支架仍然是生成复杂有机物的挑战性障碍。传统上,前者需要额外的学习过程,如分子预训练,后者需要昂贵的计算资源。为了应对这些挑战,我们提出了 OrgMol-Design,一个高效设计复杂有机物的多粒度框架。我们的OrgMol-Design由一个基于分数的生成模型和一个面向化学规则的评分模型组成,前者通过片段先验生成多样化的粗粒度支架,后者用于细粒度分子结构设计,在不丢失片段间连接细节的情况下规避了复杂子结构学习的困难。我们的方法在涵盖更广泛科学领域的四个现实世界和更具挑战性的基准测试中取得了一流的性能,超过了先进的分子生成模型。此外,与基于扩散的图模型相比,它还大幅提高了速度,减少了图形内存。我们的研究结果还证明了利用片段先验对于广义分子逆设计模型的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-granularity Score-based Generative Framework Enables Efficient Inverse Design of Complex Organics
Efficiently retrieving an enormous chemical library to design targeted molecules is crucial for accelerating drug discovery, organic chemistry, and optoelectronic materials. Despite the emergence of generative models to produce novel drug-like molecules, in a more realistic scenario, the complexity of functional groups (e.g., pyrene, acenaphthylene, and bridged-ring systems) and extensive molecular scaffolds remain challenging obstacles for the generation of complex organics. Traditionally, the former demands an extra learning process, e.g., molecular pre-training, and the latter requires expensive computational resources. To address these challenges, we propose OrgMol-Design, a multi-granularity framework for efficiently designing complex organics. Our OrgMol-Design is composed of a score-based generative model via fragment prior for diverse coarse-grained scaffold generation and a chemical-rule-aware scoring model for fine-grained molecular structure design, circumventing the difficulty of intricate substructure learning without losing connection details among fragments. Our approach achieves state-of-the-art performance in four real-world and more challenging benchmarks covering broader scientific domains, outperforming advanced molecule generative models. Additionally, it delivers a substantial speedup and graphics memory reduction compared to diffusion-based graph models. Our results also demonstrate the importance of leveraging fragment prior for a generalized molecule inverse design model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A generalized non-hourglass updated Lagrangian formulation for SPH solid dynamics A Knowledge-Inspired Hierarchical Physics-Informed Neural Network for Pipeline Hydraulic Transient Simulation Uncertainty Analysis of Limit Cycle Oscillations in Nonlinear Dynamical Systems with the Fourier Generalized Polynomial Chaos Expansion Micropolar elastoplasticity using a fast Fourier transform-based solver A differentiable structural analysis framework for high-performance design optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1