结合贝叶斯方法和专家知识预测 2 型糖尿病患者的连续血糖监测值

Yuyang Sun, Panagiotis Kosmas
{"title":"结合贝叶斯方法和专家知识预测 2 型糖尿病患者的连续血糖监测值","authors":"Yuyang Sun, Panagiotis Kosmas","doi":"arxiv-2409.07315","DOIUrl":null,"url":null,"abstract":"Precise and timely forecasting of blood glucose levels is essential for\neffective diabetes management. While extensive research has been conducted on\nType 1 diabetes mellitus, Type 2 diabetes mellitus (T2DM) presents unique\nchallenges due to its heterogeneity, underscoring the need for specialized\nblood glucose forecasting systems. This study introduces a novel blood glucose\nforecasting system, applied to a dataset of 100 patients from the ShanghaiT2DM\nstudy. Our study uniquely integrates knowledge-driven and data-driven\napproaches, leveraging expert knowledge to validate and interpret the\nrelationships among diabetes-related variables and deploying the data-driven\napproach to provide accurate forecast blood glucose levels. The Bayesian\nnetwork approach facilitates the analysis of dependencies among various\ndiabetes-related variables, thus enabling the inference of continuous glucose\nmonitoring (CGM) trajectories in similar individuals with T2DM. By\nincorporating past CGM data including inference CGM trajectories, dietary\nrecords, and individual-specific information, the Bayesian structural time\nseries (BSTS) model effectively forecasts glucose levels across time intervals\nranging from 15 to 60 minutes. Forecast results show a mean absolute error of\n6.41 mg/dL, a root mean square error of 8.29 mg/dL, and a mean absolute\npercentage error of 5.28%, for a 15-minute prediction horizon. This study makes\nthe first application of the ShanghaiT2DM dataset for glucose level\nforecasting, considering the influences of diabetes-related variables. Its\nfindings establish a foundational framework for developing personalized\ndiabetes management strategies, potentially enhancing diabetes care through\nmore accurate and timely interventions.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Bayesian Approaches and Expert Knowledge for Forecasting Continuous Glucose Monitoring Values in Type 2 Diabetes Mellitus\",\"authors\":\"Yuyang Sun, Panagiotis Kosmas\",\"doi\":\"arxiv-2409.07315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precise and timely forecasting of blood glucose levels is essential for\\neffective diabetes management. While extensive research has been conducted on\\nType 1 diabetes mellitus, Type 2 diabetes mellitus (T2DM) presents unique\\nchallenges due to its heterogeneity, underscoring the need for specialized\\nblood glucose forecasting systems. This study introduces a novel blood glucose\\nforecasting system, applied to a dataset of 100 patients from the ShanghaiT2DM\\nstudy. Our study uniquely integrates knowledge-driven and data-driven\\napproaches, leveraging expert knowledge to validate and interpret the\\nrelationships among diabetes-related variables and deploying the data-driven\\napproach to provide accurate forecast blood glucose levels. The Bayesian\\nnetwork approach facilitates the analysis of dependencies among various\\ndiabetes-related variables, thus enabling the inference of continuous glucose\\nmonitoring (CGM) trajectories in similar individuals with T2DM. By\\nincorporating past CGM data including inference CGM trajectories, dietary\\nrecords, and individual-specific information, the Bayesian structural time\\nseries (BSTS) model effectively forecasts glucose levels across time intervals\\nranging from 15 to 60 minutes. Forecast results show a mean absolute error of\\n6.41 mg/dL, a root mean square error of 8.29 mg/dL, and a mean absolute\\npercentage error of 5.28%, for a 15-minute prediction horizon. This study makes\\nthe first application of the ShanghaiT2DM dataset for glucose level\\nforecasting, considering the influences of diabetes-related variables. Its\\nfindings establish a foundational framework for developing personalized\\ndiabetes management strategies, potentially enhancing diabetes care through\\nmore accurate and timely interventions.\",\"PeriodicalId\":501309,\"journal\":{\"name\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确及时地预测血糖水平对于有效管理糖尿病至关重要。虽然对 1 型糖尿病进行了广泛的研究,但 2 型糖尿病(T2DM)因其异质性带来了独特的挑战,突出了对专业血糖预测系统的需求。本研究介绍了一种新型血糖预测系统,并将其应用于上海 T2DM 研究的 100 例患者数据集。我们的研究独特地整合了知识驱动和数据驱动方法,利用专家知识验证和解释糖尿病相关变量之间的关系,并采用数据驱动方法提供准确的血糖水平预测。贝叶斯网络方法有助于分析各种糖尿病相关变量之间的依赖关系,从而推断出类似 T2DM 患者的连续血糖监测(CGM)轨迹。贝叶斯结构时间序列(BSTS)模型结合了过去的 CGM 数据(包括推断 CGM 轨迹、饮食记录和个体特异性信息),有效地预测了 15 到 60 分钟时间间隔内的血糖水平。预测结果显示,在 15 分钟的预测范围内,平均绝对误差为 6.41 mg/dL,均方根误差为 8.29 mg/dL,平均绝对百分比误差为 5.28%。考虑到糖尿病相关变量的影响,本研究首次将上海 T2DM 数据集应用于血糖水平预测。研究结果为制定个性化糖尿病管理策略建立了一个基础框架,有可能通过更准确、更及时的干预措施提高糖尿病护理水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating Bayesian Approaches and Expert Knowledge for Forecasting Continuous Glucose Monitoring Values in Type 2 Diabetes Mellitus
Precise and timely forecasting of blood glucose levels is essential for effective diabetes management. While extensive research has been conducted on Type 1 diabetes mellitus, Type 2 diabetes mellitus (T2DM) presents unique challenges due to its heterogeneity, underscoring the need for specialized blood glucose forecasting systems. This study introduces a novel blood glucose forecasting system, applied to a dataset of 100 patients from the ShanghaiT2DM study. Our study uniquely integrates knowledge-driven and data-driven approaches, leveraging expert knowledge to validate and interpret the relationships among diabetes-related variables and deploying the data-driven approach to provide accurate forecast blood glucose levels. The Bayesian network approach facilitates the analysis of dependencies among various diabetes-related variables, thus enabling the inference of continuous glucose monitoring (CGM) trajectories in similar individuals with T2DM. By incorporating past CGM data including inference CGM trajectories, dietary records, and individual-specific information, the Bayesian structural time series (BSTS) model effectively forecasts glucose levels across time intervals ranging from 15 to 60 minutes. Forecast results show a mean absolute error of 6.41 mg/dL, a root mean square error of 8.29 mg/dL, and a mean absolute percentage error of 5.28%, for a 15-minute prediction horizon. This study makes the first application of the ShanghaiT2DM dataset for glucose level forecasting, considering the influences of diabetes-related variables. Its findings establish a foundational framework for developing personalized diabetes management strategies, potentially enhancing diabetes care through more accurate and timely interventions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A generalized non-hourglass updated Lagrangian formulation for SPH solid dynamics A Knowledge-Inspired Hierarchical Physics-Informed Neural Network for Pipeline Hydraulic Transient Simulation Uncertainty Analysis of Limit Cycle Oscillations in Nonlinear Dynamical Systems with the Fourier Generalized Polynomial Chaos Expansion Micropolar elastoplasticity using a fast Fourier transform-based solver A differentiable structural analysis framework for high-performance design optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1