用于模拟物理系统的仅向上采样和基于网格的自适应 GNN

Fu Lin, Jiasheng Shi, Shijie Luo, Qinpei Zhao, Weixiong Rao, Lei Chen
{"title":"用于模拟物理系统的仅向上采样和基于网格的自适应 GNN","authors":"Fu Lin, Jiasheng Shi, Shijie Luo, Qinpei Zhao, Weixiong Rao, Lei Chen","doi":"arxiv-2409.04740","DOIUrl":null,"url":null,"abstract":"Traditional simulation of complex mechanical systems relies on numerical\nsolvers of Partial Differential Equations (PDEs), e.g., using the Finite\nElement Method (FEM). The FEM solvers frequently suffer from intensive\ncomputation cost and high running time. Recent graph neural network (GNN)-based\nsimulation models can improve running time meanwhile with acceptable accuracy.\nUnfortunately, they are hard to tailor GNNs for complex mechanical systems,\nincluding such disadvantages as ineffective representation and inefficient\nmessage propagation (MP). To tackle these issues, in this paper, with the\nproposed Up-sampling-only and Adaptive MP techniques, we develop a novel\nhierarchical Mesh Graph Network, namely UA-MGN, for efficient and effective\nmechanical simulation. Evaluation on two synthetic and one real datasets\ndemonstrates the superiority of the UA-MGN. For example, on the Beam dataset,\ncompared to the state-of-the-art MS-MGN, UA-MGN leads to 40.99% lower errors\nbut using only 43.48% fewer network parameters and 4.49% fewer floating point\noperations (FLOPs).","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Up-sampling-only and Adaptive Mesh-based GNN for Simulating Physical Systems\",\"authors\":\"Fu Lin, Jiasheng Shi, Shijie Luo, Qinpei Zhao, Weixiong Rao, Lei Chen\",\"doi\":\"arxiv-2409.04740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional simulation of complex mechanical systems relies on numerical\\nsolvers of Partial Differential Equations (PDEs), e.g., using the Finite\\nElement Method (FEM). The FEM solvers frequently suffer from intensive\\ncomputation cost and high running time. Recent graph neural network (GNN)-based\\nsimulation models can improve running time meanwhile with acceptable accuracy.\\nUnfortunately, they are hard to tailor GNNs for complex mechanical systems,\\nincluding such disadvantages as ineffective representation and inefficient\\nmessage propagation (MP). To tackle these issues, in this paper, with the\\nproposed Up-sampling-only and Adaptive MP techniques, we develop a novel\\nhierarchical Mesh Graph Network, namely UA-MGN, for efficient and effective\\nmechanical simulation. Evaluation on two synthetic and one real datasets\\ndemonstrates the superiority of the UA-MGN. For example, on the Beam dataset,\\ncompared to the state-of-the-art MS-MGN, UA-MGN leads to 40.99% lower errors\\nbut using only 43.48% fewer network parameters and 4.49% fewer floating point\\noperations (FLOPs).\",\"PeriodicalId\":501309,\"journal\":{\"name\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

复杂机械系统的传统仿真依赖于偏微分方程(PDE)的数值求解器,例如使用有限元法(FEM)。有限元法求解器经常面临计算成本高、运行时间长的问题。最近推出的基于图神经网络(GNN)的仿真模型可以在可接受的精度下改善运行时间。遗憾的是,图神经网络很难为复杂的机械系统量身定制,包括无效表示和低效信息传播(MP)等缺点。为了解决这些问题,我们在本文中利用提出的仅向上采样和自适应 MP 技术,开发了一种新型分层网状图网络,即 UA-MGN,用于高效和有效的机械仿真。对两个合成数据集和一个真实数据集的评估证明了 UA-MGN 的优越性。例如,在Beam数据集上,与最先进的MS-MGN相比,UA-MGN的误差降低了40.99%,但只使用了43.48%的网络参数和4.49%的浮点运算(FLOP)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Up-sampling-only and Adaptive Mesh-based GNN for Simulating Physical Systems
Traditional simulation of complex mechanical systems relies on numerical solvers of Partial Differential Equations (PDEs), e.g., using the Finite Element Method (FEM). The FEM solvers frequently suffer from intensive computation cost and high running time. Recent graph neural network (GNN)-based simulation models can improve running time meanwhile with acceptable accuracy. Unfortunately, they are hard to tailor GNNs for complex mechanical systems, including such disadvantages as ineffective representation and inefficient message propagation (MP). To tackle these issues, in this paper, with the proposed Up-sampling-only and Adaptive MP techniques, we develop a novel hierarchical Mesh Graph Network, namely UA-MGN, for efficient and effective mechanical simulation. Evaluation on two synthetic and one real datasets demonstrates the superiority of the UA-MGN. For example, on the Beam dataset, compared to the state-of-the-art MS-MGN, UA-MGN leads to 40.99% lower errors but using only 43.48% fewer network parameters and 4.49% fewer floating point operations (FLOPs).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A generalized non-hourglass updated Lagrangian formulation for SPH solid dynamics A Knowledge-Inspired Hierarchical Physics-Informed Neural Network for Pipeline Hydraulic Transient Simulation Uncertainty Analysis of Limit Cycle Oscillations in Nonlinear Dynamical Systems with the Fourier Generalized Polynomial Chaos Expansion Micropolar elastoplasticity using a fast Fourier transform-based solver A differentiable structural analysis framework for high-performance design optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1