{"title":"$$\\mathcal{L}\\left({}^{m}{l}_{1}^{n}\\right)$$ 的规范集","authors":"Sung Guen Kim","doi":"10.1007/s11253-024-02329-4","DOIUrl":null,"url":null,"abstract":"<p>Let <i>n</i> ∈ ℕ, <i>n</i> ≥ 2<i>.</i> An element (<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>n</i></sub>) ∈ <i>E</i><sub><i>n</i></sub> is called a <i>norming point</i> of <i>T</i> ∈ <span>\\(\\mathcal{L}\\left({}^{n}E\\right)\\)</span> if ||<i>x</i><sub>1</sub>|| = <i>…</i> = ||<i>x</i><sub><i>n</i></sub>|| = 1 and <i>|T</i>(<i>x</i><sub>1</sub>,<i>…</i>,<i>x</i><sub><i>n</i></sub>)<i>|</i> = ||<i>T</i>||, where ℒ(<sup><i>n</i></sup><i>E</i>) denotes the space of all continuous <i>n</i>-linear forms on <i>E.</i> For <i>T</i> ∈ ℒ (<sup><i>n</i></sup><i>E</i>), we define\n</p><span>$$\\text{Norm}\\left(T\\right)=\\left\\{\\left({x}_{1},\\dots ,{x}_{n}\\right)\\in {E}^{n}:\\left({x}_{1},\\dots ,{x}_{n}\\right)\\text{ is a norming point of }T\\right\\}.$$</span><p>The set Norm(<i>T</i>) is called the <i>norming set</i> of <i>T.</i> For <i>m</i> ∈ ℕ<i>, m</i> ≥ 2, we characterize Norm(<i>T</i>) for any <i>T</i> ∈ <span>\\(\\mathcal{L}\\left({}^{m}{l}_{1}^{n}\\right)\\)</span>, where <span>\\({l}_{1}^{n}={\\mathbb{R}}^{n}\\)</span> with the <i>l</i><sub>1</sub>-norm. As applications, we classify Norm(<i>T</i>) for every <i>T</i> ∈ <span>\\(\\mathcal{L}\\left({}^{m}{l}_{1}^{n}\\right)\\)</span> with <i>n</i> = 2, 3 and <i>m</i> = 2<i>.</i></p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Norming Sets of $$\\\\mathcal{L}\\\\left({}^{m}{l}_{1}^{n}\\\\right)$$\",\"authors\":\"Sung Guen Kim\",\"doi\":\"10.1007/s11253-024-02329-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>n</i> ∈ ℕ, <i>n</i> ≥ 2<i>.</i> An element (<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>n</i></sub>) ∈ <i>E</i><sub><i>n</i></sub> is called a <i>norming point</i> of <i>T</i> ∈ <span>\\\\(\\\\mathcal{L}\\\\left({}^{n}E\\\\right)\\\\)</span> if ||<i>x</i><sub>1</sub>|| = <i>…</i> = ||<i>x</i><sub><i>n</i></sub>|| = 1 and <i>|T</i>(<i>x</i><sub>1</sub>,<i>…</i>,<i>x</i><sub><i>n</i></sub>)<i>|</i> = ||<i>T</i>||, where ℒ(<sup><i>n</i></sup><i>E</i>) denotes the space of all continuous <i>n</i>-linear forms on <i>E.</i> For <i>T</i> ∈ ℒ (<sup><i>n</i></sup><i>E</i>), we define\\n</p><span>$$\\\\text{Norm}\\\\left(T\\\\right)=\\\\left\\\\{\\\\left({x}_{1},\\\\dots ,{x}_{n}\\\\right)\\\\in {E}^{n}:\\\\left({x}_{1},\\\\dots ,{x}_{n}\\\\right)\\\\text{ is a norming point of }T\\\\right\\\\}.$$</span><p>The set Norm(<i>T</i>) is called the <i>norming set</i> of <i>T.</i> For <i>m</i> ∈ ℕ<i>, m</i> ≥ 2, we characterize Norm(<i>T</i>) for any <i>T</i> ∈ <span>\\\\(\\\\mathcal{L}\\\\left({}^{m}{l}_{1}^{n}\\\\right)\\\\)</span>, where <span>\\\\({l}_{1}^{n}={\\\\mathbb{R}}^{n}\\\\)</span> with the <i>l</i><sub>1</sub>-norm. As applications, we classify Norm(<i>T</i>) for every <i>T</i> ∈ <span>\\\\(\\\\mathcal{L}\\\\left({}^{m}{l}_{1}^{n}\\\\right)\\\\)</span> with <i>n</i> = 2, 3 and <i>m</i> = 2<i>.</i></p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-024-02329-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02329-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设 n∈ ℕ, n ≥ 2。如果||x1|| = ... = ||xn|| = 1 且||T(x1,...,xn)| = ||T||,则元素 (x1,....,xn) ∈ En 称为 T∈ \(\mathcal{L}\left({}^{n}E\right)\) 的一个规范点,其中ℒ(nE) 表示 E 上所有连续 n 线性形式的空间。对于 T∈ ℒ (nE), 我们定义$$text{Norm}\left(T\right)=\left\left({x}_{1},\dots ,{x}_{n}\right)\in {E}^{n}:\left({x}_{1},\dots ,{x}_{n}\right)\text{ 是 }T\right} 的规范点。对于 m ∈ℕ,m ≥ 2,我们用 l1-norm 来描述任意 T ∈\(\mathcal{L}left({}^{m}{l}_{1}^{n}\right)\) 的 Norm(T) 的特征,其中 \({l}_{1}^{n}={/mathbb{R}}}^{n}/)。作为应用,我们为 n = 2, 3 和 m = 2 的每个 T∈ (\mathcal{L}left({}^{m}{l}_{1}^{n}\right))分类 Norm(T)。
The Norming Sets of $$\mathcal{L}\left({}^{m}{l}_{1}^{n}\right)$$
Let n ∈ ℕ, n ≥ 2. An element (x1,…,xn) ∈ En is called a norming point of T ∈ \(\mathcal{L}\left({}^{n}E\right)\) if ||x1|| = … = ||xn|| = 1 and |T(x1,…,xn)| = ||T||, where ℒ(nE) denotes the space of all continuous n-linear forms on E. For T ∈ ℒ (nE), we define
$$\text{Norm}\left(T\right)=\left\{\left({x}_{1},\dots ,{x}_{n}\right)\in {E}^{n}:\left({x}_{1},\dots ,{x}_{n}\right)\text{ is a norming point of }T\right\}.$$
The set Norm(T) is called the norming set of T. For m ∈ ℕ, m ≥ 2, we characterize Norm(T) for any T ∈ \(\mathcal{L}\left({}^{m}{l}_{1}^{n}\right)\), where \({l}_{1}^{n}={\mathbb{R}}^{n}\) with the l1-norm. As applications, we classify Norm(T) for every T ∈ \(\mathcal{L}\left({}^{m}{l}_{1}^{n}\right)\) with n = 2, 3 and m = 2.