Pyae P. Kyawe, Ping Liu, Zhaozhao Jiang, Evan S. Bradley, Thomas Cicuto, Melanie I Trombly, Neal Silverman, Katherine Fitzgerald, William M. McDougall, Jennifer P. Wang
{"title":"对影响甲型流感病毒感染的候选宿主因子进行 CRISPR 编辑","authors":"Pyae P. Kyawe, Ping Liu, Zhaozhao Jiang, Evan S. Bradley, Thomas Cicuto, Melanie I Trombly, Neal Silverman, Katherine Fitzgerald, William M. McDougall, Jennifer P. Wang","doi":"10.1101/2024.09.10.612185","DOIUrl":null,"url":null,"abstract":"Influenza A virus (IAV) is a respiratory pathogen with a segmented negative-sense RNA genome that can cause epidemics and pandemics. The host factors required for the complete IAV infectious cycle have not been fully identified. Here, we examined select host factors that were identified by independent CRISPR screens as candidate contributors to IAV infectivity. We performed CRISPR-mediated knockout of cytidine monophosphate N-acetylneuraminic acid synthetase (CMAS) as well as CRISPR-mediated overexpression of beta-1,4 N-acetylgalactosaminyltransferase 2 (B4GALNT2) and adenosine deaminase acting on RNA 1 (ADAR1) in the human bronchial epithelial A549 cell line and evaluated IAV infectivity. We confirmed that the knockout of CMAS or overexpression of B4GALNT2 restricts IAV infection by diminishing binding to the cell surface but has no effect on vesicular stomatitis virus infection. While ADAR1 overexpression does not significantly inhibit IAV replication, it has a pro-viral effect with coxsackie B virus (CVB) infection. This pro-viral effect is not likely secondary to reduced type I interferon (IFN) production, as the induction of the IFN-stimulated genes ISG15 and CXCL10 is negligible in both parent and ADAR1-overexpressing A549 cells following CVB challenge. In contrast, ISG15 and CXCL10 production is robust and equal for parent and ADAR1-overexpressing A549 cells challenged with IAV. Taken together, these data provide insight into how host factors identified in CRISPR screens can be further explored to understand the dynamics of pro- and anti-viral factors.","PeriodicalId":501182,"journal":{"name":"bioRxiv - Immunology","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRISPR editing of candidate host factors that impact influenza A virus infection\",\"authors\":\"Pyae P. Kyawe, Ping Liu, Zhaozhao Jiang, Evan S. Bradley, Thomas Cicuto, Melanie I Trombly, Neal Silverman, Katherine Fitzgerald, William M. McDougall, Jennifer P. Wang\",\"doi\":\"10.1101/2024.09.10.612185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Influenza A virus (IAV) is a respiratory pathogen with a segmented negative-sense RNA genome that can cause epidemics and pandemics. The host factors required for the complete IAV infectious cycle have not been fully identified. Here, we examined select host factors that were identified by independent CRISPR screens as candidate contributors to IAV infectivity. We performed CRISPR-mediated knockout of cytidine monophosphate N-acetylneuraminic acid synthetase (CMAS) as well as CRISPR-mediated overexpression of beta-1,4 N-acetylgalactosaminyltransferase 2 (B4GALNT2) and adenosine deaminase acting on RNA 1 (ADAR1) in the human bronchial epithelial A549 cell line and evaluated IAV infectivity. We confirmed that the knockout of CMAS or overexpression of B4GALNT2 restricts IAV infection by diminishing binding to the cell surface but has no effect on vesicular stomatitis virus infection. While ADAR1 overexpression does not significantly inhibit IAV replication, it has a pro-viral effect with coxsackie B virus (CVB) infection. This pro-viral effect is not likely secondary to reduced type I interferon (IFN) production, as the induction of the IFN-stimulated genes ISG15 and CXCL10 is negligible in both parent and ADAR1-overexpressing A549 cells following CVB challenge. In contrast, ISG15 and CXCL10 production is robust and equal for parent and ADAR1-overexpressing A549 cells challenged with IAV. Taken together, these data provide insight into how host factors identified in CRISPR screens can be further explored to understand the dynamics of pro- and anti-viral factors.\",\"PeriodicalId\":501182,\"journal\":{\"name\":\"bioRxiv - Immunology\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Immunology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.10.612185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.10.612185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CRISPR editing of candidate host factors that impact influenza A virus infection
Influenza A virus (IAV) is a respiratory pathogen with a segmented negative-sense RNA genome that can cause epidemics and pandemics. The host factors required for the complete IAV infectious cycle have not been fully identified. Here, we examined select host factors that were identified by independent CRISPR screens as candidate contributors to IAV infectivity. We performed CRISPR-mediated knockout of cytidine monophosphate N-acetylneuraminic acid synthetase (CMAS) as well as CRISPR-mediated overexpression of beta-1,4 N-acetylgalactosaminyltransferase 2 (B4GALNT2) and adenosine deaminase acting on RNA 1 (ADAR1) in the human bronchial epithelial A549 cell line and evaluated IAV infectivity. We confirmed that the knockout of CMAS or overexpression of B4GALNT2 restricts IAV infection by diminishing binding to the cell surface but has no effect on vesicular stomatitis virus infection. While ADAR1 overexpression does not significantly inhibit IAV replication, it has a pro-viral effect with coxsackie B virus (CVB) infection. This pro-viral effect is not likely secondary to reduced type I interferon (IFN) production, as the induction of the IFN-stimulated genes ISG15 and CXCL10 is negligible in both parent and ADAR1-overexpressing A549 cells following CVB challenge. In contrast, ISG15 and CXCL10 production is robust and equal for parent and ADAR1-overexpressing A549 cells challenged with IAV. Taken together, these data provide insight into how host factors identified in CRISPR screens can be further explored to understand the dynamics of pro- and anti-viral factors.