利用大型语言模型为基于事件的监控提取流行病信息

Sergio Consoli, Peter Markov, Nikolaos I. Stilianakis, Lorenzo Bertolini, Antonio Puertas Gallardo, Mario Ceresa
{"title":"利用大型语言模型为基于事件的监控提取流行病信息","authors":"Sergio Consoli, Peter Markov, Nikolaos I. Stilianakis, Lorenzo Bertolini, Antonio Puertas Gallardo, Mario Ceresa","doi":"arxiv-2408.14277","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to epidemic surveillance, leveraging the\npower of Artificial Intelligence and Large Language Models (LLMs) for effective\ninterpretation of unstructured big data sources, like the popular ProMED and\nWHO Disease Outbreak News. We explore several LLMs, evaluating their\ncapabilities in extracting valuable epidemic information. We further enhance\nthe capabilities of the LLMs using in-context learning, and test the\nperformance of an ensemble model incorporating multiple open-source LLMs. The\nfindings indicate that LLMs can significantly enhance the accuracy and\ntimeliness of epidemic modelling and forecasting, offering a promising tool for\nmanaging future pandemic events.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epidemic Information Extraction for Event-Based Surveillance using Large Language Models\",\"authors\":\"Sergio Consoli, Peter Markov, Nikolaos I. Stilianakis, Lorenzo Bertolini, Antonio Puertas Gallardo, Mario Ceresa\",\"doi\":\"arxiv-2408.14277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approach to epidemic surveillance, leveraging the\\npower of Artificial Intelligence and Large Language Models (LLMs) for effective\\ninterpretation of unstructured big data sources, like the popular ProMED and\\nWHO Disease Outbreak News. We explore several LLMs, evaluating their\\ncapabilities in extracting valuable epidemic information. We further enhance\\nthe capabilities of the LLMs using in-context learning, and test the\\nperformance of an ensemble model incorporating multiple open-source LLMs. The\\nfindings indicate that LLMs can significantly enhance the accuracy and\\ntimeliness of epidemic modelling and forecasting, offering a promising tool for\\nmanaging future pandemic events.\",\"PeriodicalId\":501309,\"journal\":{\"name\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.14277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新颖的流行病监测方法,利用人工智能和大型语言模型(LLMs)的力量对非结构化大数据源(如流行的 ProMED 和世界卫生组织疾病爆发新闻)进行有效解释。我们探索了几种大型语言模型,评估了它们在提取有价值的流行病信息方面的能力。我们利用上下文学习进一步增强了 LLM 的能力,并测试了包含多个开源 LLM 的集合模型的性能。研究结果表明,LLMs 可以大大提高流行病建模和预测的准确性和及时性,为管理未来的流行病事件提供了一种前景广阔的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Epidemic Information Extraction for Event-Based Surveillance using Large Language Models
This paper presents a novel approach to epidemic surveillance, leveraging the power of Artificial Intelligence and Large Language Models (LLMs) for effective interpretation of unstructured big data sources, like the popular ProMED and WHO Disease Outbreak News. We explore several LLMs, evaluating their capabilities in extracting valuable epidemic information. We further enhance the capabilities of the LLMs using in-context learning, and test the performance of an ensemble model incorporating multiple open-source LLMs. The findings indicate that LLMs can significantly enhance the accuracy and timeliness of epidemic modelling and forecasting, offering a promising tool for managing future pandemic events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A generalized non-hourglass updated Lagrangian formulation for SPH solid dynamics A Knowledge-Inspired Hierarchical Physics-Informed Neural Network for Pipeline Hydraulic Transient Simulation Uncertainty Analysis of Limit Cycle Oscillations in Nonlinear Dynamical Systems with the Fourier Generalized Polynomial Chaos Expansion Micropolar elastoplasticity using a fast Fourier transform-based solver A differentiable structural analysis framework for high-performance design optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1