强化学习在量化金融领域的演变

Nikolaos Pippas, Cagatay Turkay, Elliot A. Ludvig
{"title":"强化学习在量化金融领域的演变","authors":"Nikolaos Pippas, Cagatay Turkay, Elliot A. Ludvig","doi":"arxiv-2408.10932","DOIUrl":null,"url":null,"abstract":"Reinforcement Learning (RL) has experienced significant advancement over the\npast decade, prompting a growing interest in applications within finance. This\nsurvey critically evaluates 167 publications, exploring diverse RL applications\nand frameworks in finance. Financial markets, marked by their complexity,\nmulti-agent nature, information asymmetry, and inherent randomness, serve as an\nintriguing test-bed for RL. Traditional finance offers certain solutions, and\nRL advances these with a more dynamic approach, incorporating machine learning\nmethods, including transfer learning, meta-learning, and multi-agent solutions.\nThis survey dissects key RL components through the lens of Quantitative\nFinance. We uncover emerging themes, propose areas for future research, and\ncritique the strengths and weaknesses of existing methods.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Evolution of Reinforcement Learning in Quantitative Finance\",\"authors\":\"Nikolaos Pippas, Cagatay Turkay, Elliot A. Ludvig\",\"doi\":\"arxiv-2408.10932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforcement Learning (RL) has experienced significant advancement over the\\npast decade, prompting a growing interest in applications within finance. This\\nsurvey critically evaluates 167 publications, exploring diverse RL applications\\nand frameworks in finance. Financial markets, marked by their complexity,\\nmulti-agent nature, information asymmetry, and inherent randomness, serve as an\\nintriguing test-bed for RL. Traditional finance offers certain solutions, and\\nRL advances these with a more dynamic approach, incorporating machine learning\\nmethods, including transfer learning, meta-learning, and multi-agent solutions.\\nThis survey dissects key RL components through the lens of Quantitative\\nFinance. We uncover emerging themes, propose areas for future research, and\\ncritique the strengths and weaknesses of existing methods.\",\"PeriodicalId\":501309,\"journal\":{\"name\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.10932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

强化学习(RL)在过去十年中取得了长足的进步,促使人们对其在金融领域的应用越来越感兴趣。本调查对 167 篇出版物进行了严格评估,探讨了强化学习在金融领域的各种应用和框架。金融市场具有复杂性、多代理性、信息不对称和固有随机性等特点,是 RL 的一个重要试验场。传统金融学提供了一些解决方案,而 RL 则以一种更动态的方法推进了这些解决方案,并结合了机器学习方法,包括迁移学习、元学习和多代理解决方案。我们揭示了新出现的主题,提出了未来研究的领域,并对现有方法的优缺点进行了批判。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Evolution of Reinforcement Learning in Quantitative Finance
Reinforcement Learning (RL) has experienced significant advancement over the past decade, prompting a growing interest in applications within finance. This survey critically evaluates 167 publications, exploring diverse RL applications and frameworks in finance. Financial markets, marked by their complexity, multi-agent nature, information asymmetry, and inherent randomness, serve as an intriguing test-bed for RL. Traditional finance offers certain solutions, and RL advances these with a more dynamic approach, incorporating machine learning methods, including transfer learning, meta-learning, and multi-agent solutions. This survey dissects key RL components through the lens of Quantitative Finance. We uncover emerging themes, propose areas for future research, and critique the strengths and weaknesses of existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A generalized non-hourglass updated Lagrangian formulation for SPH solid dynamics A Knowledge-Inspired Hierarchical Physics-Informed Neural Network for Pipeline Hydraulic Transient Simulation Uncertainty Analysis of Limit Cycle Oscillations in Nonlinear Dynamical Systems with the Fourier Generalized Polynomial Chaos Expansion Micropolar elastoplasticity using a fast Fourier transform-based solver A differentiable structural analysis framework for high-performance design optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1