BrainGT:用于脑部疾病诊断的多功能脑图转换器

Ahsan Shehzad, Shuo Yu, Dongyu Zhang, Shagufta Abid, Xinrui Cheng, Jingjing Zhou, Feng Xia
{"title":"BrainGT:用于脑部疾病诊断的多功能脑图转换器","authors":"Ahsan Shehzad, Shuo Yu, Dongyu Zhang, Shagufta Abid, Xinrui Cheng, Jingjing Zhou, Feng Xia","doi":"10.1101/2024.08.30.24312819","DOIUrl":null,"url":null,"abstract":"Brain networks play a crucial role in the diagnosis of brain disorders by enabling the identification of abnormal patterns and connections in brain activities. Previous studies exploit the Pearson’s correlation coefficient to construct functional brain networks from fMRI data and use graph learning to diagnose brain diseases. However, correlation-based brain networks are overly dense (often fully connected), which obscures meaningful connections and complicates subsequent analyses. This dense connectivity poses substantial performance challenges to traditional graph transformers, which are primarily designed for sparse graphs. Consequently, this results in a notable reduction in diagnostic accuracy. To address this challenging issue, we propose a multifunctional brain graph transformer model for brain disorders diagnosis, namely BrainGT, which is capable of constructing multifunctional brain networks rather than a dense brain network from fMRI data. It utilizes the fusion of self-attention and cross-attention mechanisms to learn important features within and across multiple functional brain networks. Classification (diagnosis) experiments conducted on three real fMRI datasets (i.e., ADNI, PPMI, and ABIDE) demonstrate the superiority of the proposed BrainGT over state-of-the-art methods.","PeriodicalId":501454,"journal":{"name":"medRxiv - Health Informatics","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BrainGT: Multifunctional Brain Graph Transformer for Brain Disorder Diagnosis\",\"authors\":\"Ahsan Shehzad, Shuo Yu, Dongyu Zhang, Shagufta Abid, Xinrui Cheng, Jingjing Zhou, Feng Xia\",\"doi\":\"10.1101/2024.08.30.24312819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain networks play a crucial role in the diagnosis of brain disorders by enabling the identification of abnormal patterns and connections in brain activities. Previous studies exploit the Pearson’s correlation coefficient to construct functional brain networks from fMRI data and use graph learning to diagnose brain diseases. However, correlation-based brain networks are overly dense (often fully connected), which obscures meaningful connections and complicates subsequent analyses. This dense connectivity poses substantial performance challenges to traditional graph transformers, which are primarily designed for sparse graphs. Consequently, this results in a notable reduction in diagnostic accuracy. To address this challenging issue, we propose a multifunctional brain graph transformer model for brain disorders diagnosis, namely BrainGT, which is capable of constructing multifunctional brain networks rather than a dense brain network from fMRI data. It utilizes the fusion of self-attention and cross-attention mechanisms to learn important features within and across multiple functional brain networks. Classification (diagnosis) experiments conducted on three real fMRI datasets (i.e., ADNI, PPMI, and ABIDE) demonstrate the superiority of the proposed BrainGT over state-of-the-art methods.\",\"PeriodicalId\":501454,\"journal\":{\"name\":\"medRxiv - Health Informatics\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.30.24312819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.30.24312819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑网络能够识别大脑活动中的异常模式和连接,在诊断脑部疾病方面发挥着至关重要的作用。以往的研究利用皮尔逊相关系数从 fMRI 数据中构建脑功能网络,并利用图学习诊断脑部疾病。然而,基于相关性的大脑网络过于密集(通常是全连接),这掩盖了有意义的连接,并使后续分析复杂化。这种密集连接对传统图转换器的性能提出了巨大挑战,因为传统图转换器主要是针对稀疏图设计的。因此,这导致诊断准确性明显降低。为了解决这个具有挑战性的问题,我们提出了一种用于脑部疾病诊断的多功能脑图转换器模型,即 BrainGT,它能够从 fMRI 数据中构建多功能脑网络,而不是密集的脑网络。它利用自我注意和交叉注意机制的融合,学习多个功能脑网络内部和之间的重要特征。在三个真实的 fMRI 数据集(即 ADNI、PPMI 和 ABIDE)上进行的分类(诊断)实验证明了所提出的 BrainGT 优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BrainGT: Multifunctional Brain Graph Transformer for Brain Disorder Diagnosis
Brain networks play a crucial role in the diagnosis of brain disorders by enabling the identification of abnormal patterns and connections in brain activities. Previous studies exploit the Pearson’s correlation coefficient to construct functional brain networks from fMRI data and use graph learning to diagnose brain diseases. However, correlation-based brain networks are overly dense (often fully connected), which obscures meaningful connections and complicates subsequent analyses. This dense connectivity poses substantial performance challenges to traditional graph transformers, which are primarily designed for sparse graphs. Consequently, this results in a notable reduction in diagnostic accuracy. To address this challenging issue, we propose a multifunctional brain graph transformer model for brain disorders diagnosis, namely BrainGT, which is capable of constructing multifunctional brain networks rather than a dense brain network from fMRI data. It utilizes the fusion of self-attention and cross-attention mechanisms to learn important features within and across multiple functional brain networks. Classification (diagnosis) experiments conducted on three real fMRI datasets (i.e., ADNI, PPMI, and ABIDE) demonstrate the superiority of the proposed BrainGT over state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A case is not a case is not a case - challenges and solutions in determining urolithiasis caseloads using the digital infrastructure of a clinical data warehouse Reliable Online Auditory Cognitive Testing: An observational study Federated Multiple Imputation for Variables that Are Missing Not At Random in Distributed Electronic Health Records Characterizing the connection between Parkinson's disease progression and healthcare utilization Generative AI and Large Language Models in Reducing Medication Related Harm and Adverse Drug Events - A Scoping Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1