{"title":"解密斑马鱼早期胚胎发育过程中的细胞特异性转录本异质性和替代剪接","authors":"Xiumei Lin, Xue Wang, Chang Liu, Chuanyu Liu, Tao Zeng, Ziqi Yuan, Meidi Hu, Rong Xiang, Kaichen Zhao, Jie Zhou, Shichen Yang, Yang Wang, Kaifeng Meng, Hui Wang, Guangli He, Rui Zhao, Jiaheng Liu, Yunqi Huang, Jingfang Pan, Jialu Wang, Junyi Chen, Fei Guo, Yuliang Dong, Xun Xu, Daji Luo, Ying Gu, Longqi Liu, Zhiqiang Dong, Liang Chen","doi":"10.1101/2024.09.08.611790","DOIUrl":null,"url":null,"abstract":"Cell fate determination during early embryonic development is a complex process modulated by gene expression. The intricate interplay of transcriptional and post-transcriptional regulation is integral to the developmental trajectory of embryogenesis, yet how RNA processing may contribute to early development programming is largely elusive. Leveraging recent technological advances in single-molecule nanopore sequencing, we developed a single-cell long-read transcriptome sequencing technology, allowing a clear view of transcript diversity during zebrafish embryogenesis, particularly spanning the periods of pre- and post-zygotic genome activation (ZGA). A closer examination of the dynamic transcript usage and potential alternative splicing revealed that abundant stage-specific transcripts with differential coding potentials are involved in distinct biological functions. Specifically, we identified two cell populations at the onset of ZGA based on isoform diversity instead of gene profiling, which followed divergent developmental trajectories toward the ectoderm and the presumptive ectoderm. These two populations of cells were characterized by divergent splicing regulations linked to differential RNA-binding proteins, including SNRPA and SFPQ. Altogether, using the single-cell long-read transcriptome sequencing strategy, our work has revealed the cell-specific transcriptome dynamics contributing to the cell fate determination during embryogenesis.","PeriodicalId":501269,"journal":{"name":"bioRxiv - Developmental Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering the Cell-Specific Transcript Heterogeneity and Alternative Splicing during the Early Embryonic Development of Zebrafish\",\"authors\":\"Xiumei Lin, Xue Wang, Chang Liu, Chuanyu Liu, Tao Zeng, Ziqi Yuan, Meidi Hu, Rong Xiang, Kaichen Zhao, Jie Zhou, Shichen Yang, Yang Wang, Kaifeng Meng, Hui Wang, Guangli He, Rui Zhao, Jiaheng Liu, Yunqi Huang, Jingfang Pan, Jialu Wang, Junyi Chen, Fei Guo, Yuliang Dong, Xun Xu, Daji Luo, Ying Gu, Longqi Liu, Zhiqiang Dong, Liang Chen\",\"doi\":\"10.1101/2024.09.08.611790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cell fate determination during early embryonic development is a complex process modulated by gene expression. The intricate interplay of transcriptional and post-transcriptional regulation is integral to the developmental trajectory of embryogenesis, yet how RNA processing may contribute to early development programming is largely elusive. Leveraging recent technological advances in single-molecule nanopore sequencing, we developed a single-cell long-read transcriptome sequencing technology, allowing a clear view of transcript diversity during zebrafish embryogenesis, particularly spanning the periods of pre- and post-zygotic genome activation (ZGA). A closer examination of the dynamic transcript usage and potential alternative splicing revealed that abundant stage-specific transcripts with differential coding potentials are involved in distinct biological functions. Specifically, we identified two cell populations at the onset of ZGA based on isoform diversity instead of gene profiling, which followed divergent developmental trajectories toward the ectoderm and the presumptive ectoderm. These two populations of cells were characterized by divergent splicing regulations linked to differential RNA-binding proteins, including SNRPA and SFPQ. Altogether, using the single-cell long-read transcriptome sequencing strategy, our work has revealed the cell-specific transcriptome dynamics contributing to the cell fate determination during embryogenesis.\",\"PeriodicalId\":501269,\"journal\":{\"name\":\"bioRxiv - Developmental Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Developmental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.08.611790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.08.611790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deciphering the Cell-Specific Transcript Heterogeneity and Alternative Splicing during the Early Embryonic Development of Zebrafish
Cell fate determination during early embryonic development is a complex process modulated by gene expression. The intricate interplay of transcriptional and post-transcriptional regulation is integral to the developmental trajectory of embryogenesis, yet how RNA processing may contribute to early development programming is largely elusive. Leveraging recent technological advances in single-molecule nanopore sequencing, we developed a single-cell long-read transcriptome sequencing technology, allowing a clear view of transcript diversity during zebrafish embryogenesis, particularly spanning the periods of pre- and post-zygotic genome activation (ZGA). A closer examination of the dynamic transcript usage and potential alternative splicing revealed that abundant stage-specific transcripts with differential coding potentials are involved in distinct biological functions. Specifically, we identified two cell populations at the onset of ZGA based on isoform diversity instead of gene profiling, which followed divergent developmental trajectories toward the ectoderm and the presumptive ectoderm. These two populations of cells were characterized by divergent splicing regulations linked to differential RNA-binding proteins, including SNRPA and SFPQ. Altogether, using the single-cell long-read transcriptome sequencing strategy, our work has revealed the cell-specific transcriptome dynamics contributing to the cell fate determination during embryogenesis.