Nicha Tokavanich, Byron Chan, Katelyn Strauss, Chris Castro, Yuki Arai, Mizuki Nagata, Marc Foretz, Daniel J Brooks, Noriaki Ono, Wanida Ono, Marc Wein
{"title":"盐诱导激酶控制牙槽骨的发育、稳态和牙槽愈合","authors":"Nicha Tokavanich, Byron Chan, Katelyn Strauss, Chris Castro, Yuki Arai, Mizuki Nagata, Marc Foretz, Daniel J Brooks, Noriaki Ono, Wanida Ono, Marc Wein","doi":"10.1101/2024.09.04.611228","DOIUrl":null,"url":null,"abstract":"Alveolar bone supports and anchors teeth. The parathyroid hormone-related protein (PTHrP) pathway plays a key role in alveolar bone biology. Salt inducible kinases (SIKs) are important downstream regulators of PTH/PTHrP signaling in the appendicular skeleton, where SIK inhibition increases bone formation and trabecular bone mass. However, the function of these kinases in alveolar bone remains unknown. Here, we report a critical role for SIK2/SIK3 in alveolar bone development, homeostasis, and socket healing after tooth extraction. Inducible SIK2/SIK3 deletion led to dramatic alveolar bone defects without changes in tooth eruption. Ablating these kinases impairs alveolar bone formation due to disrupted osteoblast maturation, a finding associated with ectopic periostin expression by fibrous cells in regions of absent alveolar bone at steady state and following molar extraction. Distinct phenotypic consequences of SIK2/SIK3 deletion in appendicular versus craniofacial bones prompted us to identify a specific transcriptomic signature in alveolar versus long bone osteoblasts. Thus, SIK2/SIK3 deletion illuminates a key role for these kinases in alveolar bone biology and highlights the emerging concept that different osteoblast subsets utilize unique genetic programs.","PeriodicalId":501269,"journal":{"name":"bioRxiv - Developmental Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of alveolar bone development, homeostasis, and socket healing by salt inducible kinases\",\"authors\":\"Nicha Tokavanich, Byron Chan, Katelyn Strauss, Chris Castro, Yuki Arai, Mizuki Nagata, Marc Foretz, Daniel J Brooks, Noriaki Ono, Wanida Ono, Marc Wein\",\"doi\":\"10.1101/2024.09.04.611228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alveolar bone supports and anchors teeth. The parathyroid hormone-related protein (PTHrP) pathway plays a key role in alveolar bone biology. Salt inducible kinases (SIKs) are important downstream regulators of PTH/PTHrP signaling in the appendicular skeleton, where SIK inhibition increases bone formation and trabecular bone mass. However, the function of these kinases in alveolar bone remains unknown. Here, we report a critical role for SIK2/SIK3 in alveolar bone development, homeostasis, and socket healing after tooth extraction. Inducible SIK2/SIK3 deletion led to dramatic alveolar bone defects without changes in tooth eruption. Ablating these kinases impairs alveolar bone formation due to disrupted osteoblast maturation, a finding associated with ectopic periostin expression by fibrous cells in regions of absent alveolar bone at steady state and following molar extraction. Distinct phenotypic consequences of SIK2/SIK3 deletion in appendicular versus craniofacial bones prompted us to identify a specific transcriptomic signature in alveolar versus long bone osteoblasts. Thus, SIK2/SIK3 deletion illuminates a key role for these kinases in alveolar bone biology and highlights the emerging concept that different osteoblast subsets utilize unique genetic programs.\",\"PeriodicalId\":501269,\"journal\":{\"name\":\"bioRxiv - Developmental Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Developmental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.04.611228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.04.611228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
牙槽骨支撑并固定着牙齿。甲状旁腺激素相关蛋白(PTHrP)通路在牙槽骨生物学中起着关键作用。盐诱导激酶(SIKs)是附属骨骼中 PTH/PTHrP 信号传导的重要下游调节因子,抑制 SIK 可增加骨形成和骨小梁质量。然而,这些激酶在牙槽骨中的功能仍然未知。在这里,我们报告了 SIK2/SIK3 在拔牙后牙槽骨发育、平衡和牙槽愈合中的关键作用。诱导性 SIK2/SIK3 基因缺失会导致牙槽骨严重缺损,而牙齿萌出却不会发生变化。消减这些激酶会破坏成骨细胞的成熟,从而影响牙槽骨的形成,这一发现与稳定状态下和拔牙后牙槽骨缺失区域的纤维细胞异位表达骨膜增生蛋白有关。SIK2/SIK3缺失在阑尾骨与颅面骨中的表型后果不同,这促使我们在牙槽骨与长骨成骨细胞中发现了特定的转录组特征。因此,SIK2/SIK3缺失阐明了这些激酶在牙槽骨生物学中的关键作用,并强调了不同成骨细胞亚群利用独特遗传程序的新兴概念。
Control of alveolar bone development, homeostasis, and socket healing by salt inducible kinases
Alveolar bone supports and anchors teeth. The parathyroid hormone-related protein (PTHrP) pathway plays a key role in alveolar bone biology. Salt inducible kinases (SIKs) are important downstream regulators of PTH/PTHrP signaling in the appendicular skeleton, where SIK inhibition increases bone formation and trabecular bone mass. However, the function of these kinases in alveolar bone remains unknown. Here, we report a critical role for SIK2/SIK3 in alveolar bone development, homeostasis, and socket healing after tooth extraction. Inducible SIK2/SIK3 deletion led to dramatic alveolar bone defects without changes in tooth eruption. Ablating these kinases impairs alveolar bone formation due to disrupted osteoblast maturation, a finding associated with ectopic periostin expression by fibrous cells in regions of absent alveolar bone at steady state and following molar extraction. Distinct phenotypic consequences of SIK2/SIK3 deletion in appendicular versus craniofacial bones prompted us to identify a specific transcriptomic signature in alveolar versus long bone osteoblasts. Thus, SIK2/SIK3 deletion illuminates a key role for these kinases in alveolar bone biology and highlights the emerging concept that different osteoblast subsets utilize unique genetic programs.