利用保形生存分析预测心力衰竭重症患者的生存时间

Xiaomeng Wang, Zhimei Ren, Jiancheng Ye
{"title":"利用保形生存分析预测心力衰竭重症患者的生存时间","authors":"Xiaomeng Wang, Zhimei Ren, Jiancheng Ye","doi":"10.1101/2024.09.07.24313245","DOIUrl":null,"url":null,"abstract":"Heart failure (HF) is a critical public health issue, particularly for critically ill patients in intensive care units (ICUs). Predicting survival outcome in critically ill patients is a difficult yet crucially important task for timely treatment. This study utilizes a novel approach, conformalized survival analysis (CSA), designed to construct lower bounds on the survival time in critically ill HF patients with high confidence. Utilizing data from the MIMIC-IV dataset, this work demonstrates that CSA outperforms traditional survival models, such as the Cox proportional hazards model and Accelerated Failure Time (AFT) model, particularly in providing reliable, interpretable, and individualized predictions. By applying CSA to a large, real-world dataset, the study highlights its potential to improve decision-making in critical care, offering a more nuanced and accurate tool for prognostication in a setting where precise predictions and guaranteed uncertainty quantification can significantly influence patient outcomes.","PeriodicalId":501454,"journal":{"name":"medRxiv - Health Informatics","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting survival time for critically ill patients with heart failure using conformalized survival analysis\",\"authors\":\"Xiaomeng Wang, Zhimei Ren, Jiancheng Ye\",\"doi\":\"10.1101/2024.09.07.24313245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heart failure (HF) is a critical public health issue, particularly for critically ill patients in intensive care units (ICUs). Predicting survival outcome in critically ill patients is a difficult yet crucially important task for timely treatment. This study utilizes a novel approach, conformalized survival analysis (CSA), designed to construct lower bounds on the survival time in critically ill HF patients with high confidence. Utilizing data from the MIMIC-IV dataset, this work demonstrates that CSA outperforms traditional survival models, such as the Cox proportional hazards model and Accelerated Failure Time (AFT) model, particularly in providing reliable, interpretable, and individualized predictions. By applying CSA to a large, real-world dataset, the study highlights its potential to improve decision-making in critical care, offering a more nuanced and accurate tool for prognostication in a setting where precise predictions and guaranteed uncertainty quantification can significantly influence patient outcomes.\",\"PeriodicalId\":501454,\"journal\":{\"name\":\"medRxiv - Health Informatics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.07.24313245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.07.24313245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心力衰竭(HF)是一个重要的公共卫生问题,对于重症监护室(ICU)中的危重病人来说尤其如此。预测重症患者的生存结果是一项困难但对及时治疗至关重要的任务。本研究采用了一种新方法--保形生存分析(CSA),旨在构建具有高置信度的高血压重症患者生存时间下限。利用来自 MIMIC-IV 数据集的数据,这项工作证明了保形生存分析优于传统的生存模型,如 Cox 比例危险模型和加速衰竭时间(AFT)模型,尤其是在提供可靠、可解释和个性化预测方面。通过将 CSA 应用于大型真实数据集,该研究强调了 CSA 在改善重症监护决策方面的潜力,在精确预测和保证不确定性量化可显著影响患者预后的情况下,CSA 可为预后提供更细致、更准确的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting survival time for critically ill patients with heart failure using conformalized survival analysis
Heart failure (HF) is a critical public health issue, particularly for critically ill patients in intensive care units (ICUs). Predicting survival outcome in critically ill patients is a difficult yet crucially important task for timely treatment. This study utilizes a novel approach, conformalized survival analysis (CSA), designed to construct lower bounds on the survival time in critically ill HF patients with high confidence. Utilizing data from the MIMIC-IV dataset, this work demonstrates that CSA outperforms traditional survival models, such as the Cox proportional hazards model and Accelerated Failure Time (AFT) model, particularly in providing reliable, interpretable, and individualized predictions. By applying CSA to a large, real-world dataset, the study highlights its potential to improve decision-making in critical care, offering a more nuanced and accurate tool for prognostication in a setting where precise predictions and guaranteed uncertainty quantification can significantly influence patient outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A case is not a case is not a case - challenges and solutions in determining urolithiasis caseloads using the digital infrastructure of a clinical data warehouse Reliable Online Auditory Cognitive Testing: An observational study Federated Multiple Imputation for Variables that Are Missing Not At Random in Distributed Electronic Health Records Characterizing the connection between Parkinson's disease progression and healthcare utilization Generative AI and Large Language Models in Reducing Medication Related Harm and Adverse Drug Events - A Scoping Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1