未来的流行病:人工智能设计的检测麻风杆菌(普通型和 1b 支系特异型)的化验方法

Lucero Mendoza-Maldonado, John MacSharry, Johan Garssen, Aletta D. Kraneveld, Alberto Tonda, Alejandro Lopez-Rincon
{"title":"未来的流行病:人工智能设计的检测麻风杆菌(普通型和 1b 支系特异型)的化验方法","authors":"Lucero Mendoza-Maldonado, John MacSharry, Johan Garssen, Aletta D. Kraneveld, Alberto Tonda, Alejandro Lopez-Rincon","doi":"10.1101/2024.08.22.24312441","DOIUrl":null,"url":null,"abstract":"The global outbreak of human monkeypox (mpox) in 2022, declared a Public Health Emergency of International Concern by the WHO, has underscored the urgent need for effective diagnostic tools. In August 2024 WHO again declared mpox as a Public Health Emergency of International Concern. This study presents an innovative approach using artificial intelligence (AI) to design primers for the rapid and accurate detection of mpox. Leveraging evolutionary algorithms, we developed primer sets with high specificity and sensitivity, validated in silico for mpox main lineage and the Clade 1b. These primers are crucial for distinguishing mpox from other viruses, enabling precise diagnosis and timely public health responses. Our findings highlight the potential of AI-driven methodologies to enhance surveillance, vaccination strategies, and outbreak management, particularly for emerging zoonotic diseases. The emergence of new mpox clades, such as Clade 1b, with higher mortality rates, further emphasizes the necessity for continuous monitoring and preparedness for future pandemics. This study advocates for the integration of AI in molecular diagnostics to improve public health outcomes.","PeriodicalId":501454,"journal":{"name":"medRxiv - Health Informatics","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Future Pandemics: AI-Designed Assays for Detecting Mpox, General and Clade 1b Specific\",\"authors\":\"Lucero Mendoza-Maldonado, John MacSharry, Johan Garssen, Aletta D. Kraneveld, Alberto Tonda, Alejandro Lopez-Rincon\",\"doi\":\"10.1101/2024.08.22.24312441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The global outbreak of human monkeypox (mpox) in 2022, declared a Public Health Emergency of International Concern by the WHO, has underscored the urgent need for effective diagnostic tools. In August 2024 WHO again declared mpox as a Public Health Emergency of International Concern. This study presents an innovative approach using artificial intelligence (AI) to design primers for the rapid and accurate detection of mpox. Leveraging evolutionary algorithms, we developed primer sets with high specificity and sensitivity, validated in silico for mpox main lineage and the Clade 1b. These primers are crucial for distinguishing mpox from other viruses, enabling precise diagnosis and timely public health responses. Our findings highlight the potential of AI-driven methodologies to enhance surveillance, vaccination strategies, and outbreak management, particularly for emerging zoonotic diseases. The emergence of new mpox clades, such as Clade 1b, with higher mortality rates, further emphasizes the necessity for continuous monitoring and preparedness for future pandemics. This study advocates for the integration of AI in molecular diagnostics to improve public health outcomes.\",\"PeriodicalId\":501454,\"journal\":{\"name\":\"medRxiv - Health Informatics\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.22.24312441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.22.24312441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2022 年,人猴痘在全球爆发,世卫组织宣布其为 "国际关注的公共卫生紧急事件",这凸显了对有效诊断工具的迫切需求。2024 年 8 月,世卫组织再次宣布猴痘为国际关注的突发公共卫生事件。本研究提出了一种利用人工智能(AI)设计引物的创新方法,用于快速准确地检测天花。利用进化算法,我们开发出了具有高特异性和高灵敏度的引物集,并对 mpox 主系和支系 1b 进行了硅验证。这些引物对于区分 mpox 和其他病毒、实现精确诊断和及时的公共卫生响应至关重要。我们的研究结果凸显了人工智能驱动的方法在加强监测、疫苗接种策略和疫情管理方面的潜力,尤其是在新出现的人畜共患疾病方面。新的 mpox 支系(如支系 1b)的出现具有更高的死亡率,这进一步强调了对未来流行病进行持续监测和防备的必要性。本研究提倡将人工智能融入分子诊断,以改善公共卫生成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Future Pandemics: AI-Designed Assays for Detecting Mpox, General and Clade 1b Specific
The global outbreak of human monkeypox (mpox) in 2022, declared a Public Health Emergency of International Concern by the WHO, has underscored the urgent need for effective diagnostic tools. In August 2024 WHO again declared mpox as a Public Health Emergency of International Concern. This study presents an innovative approach using artificial intelligence (AI) to design primers for the rapid and accurate detection of mpox. Leveraging evolutionary algorithms, we developed primer sets with high specificity and sensitivity, validated in silico for mpox main lineage and the Clade 1b. These primers are crucial for distinguishing mpox from other viruses, enabling precise diagnosis and timely public health responses. Our findings highlight the potential of AI-driven methodologies to enhance surveillance, vaccination strategies, and outbreak management, particularly for emerging zoonotic diseases. The emergence of new mpox clades, such as Clade 1b, with higher mortality rates, further emphasizes the necessity for continuous monitoring and preparedness for future pandemics. This study advocates for the integration of AI in molecular diagnostics to improve public health outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A case is not a case is not a case - challenges and solutions in determining urolithiasis caseloads using the digital infrastructure of a clinical data warehouse Reliable Online Auditory Cognitive Testing: An observational study Federated Multiple Imputation for Variables that Are Missing Not At Random in Distributed Electronic Health Records Characterizing the connection between Parkinson's disease progression and healthcare utilization Generative AI and Large Language Models in Reducing Medication Related Harm and Adverse Drug Events - A Scoping Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1