CODE - XAI:通过使用真实世界数据的可解释人工智能构建和解读治疗效果

Mingyu Lu, Ian Covert, Nathan J. White, Su-In Lee
{"title":"CODE - XAI:通过使用真实世界数据的可解释人工智能构建和解读治疗效果","authors":"Mingyu Lu, Ian Covert, Nathan J. White, Su-In Lee","doi":"10.1101/2024.09.04.24312866","DOIUrl":null,"url":null,"abstract":"Determining which features drive the treatment effect for individual patients has long been a complex and critical question in clinical decision-making. Evidence from randomized controlled trials (RCTs) are the gold standard for guiding treatment decisions. However, individual patient differences often complicate the application of RCT findings, leading to imperfect treatment options. Traditional subgroup analyses fall short due to data dimensionality, type, and study design. To overcome these limitations, we propose CODE-XAI, a framework that interprets Conditional Average Treatment Effect (CATE) models using Explainable AI (XAI) to perform feature discovery. CODE-XAI provides feature attribution at the individual subject level, enhancing our understanding of treatment responses. We benchmark these XAI methods using semi-synthetic data and RCTs, demonstrating their effectiveness in uncovering feature contributions and enabling cross-cohort analysis, advancing precision medicine and scientific discovery.","PeriodicalId":501454,"journal":{"name":"medRxiv - Health Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CODE - XAI: Construing and Deciphering Treatment Effects via Explainable AI using Real-world Data\",\"authors\":\"Mingyu Lu, Ian Covert, Nathan J. White, Su-In Lee\",\"doi\":\"10.1101/2024.09.04.24312866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determining which features drive the treatment effect for individual patients has long been a complex and critical question in clinical decision-making. Evidence from randomized controlled trials (RCTs) are the gold standard for guiding treatment decisions. However, individual patient differences often complicate the application of RCT findings, leading to imperfect treatment options. Traditional subgroup analyses fall short due to data dimensionality, type, and study design. To overcome these limitations, we propose CODE-XAI, a framework that interprets Conditional Average Treatment Effect (CATE) models using Explainable AI (XAI) to perform feature discovery. CODE-XAI provides feature attribution at the individual subject level, enhancing our understanding of treatment responses. We benchmark these XAI methods using semi-synthetic data and RCTs, demonstrating their effectiveness in uncovering feature contributions and enabling cross-cohort analysis, advancing precision medicine and scientific discovery.\",\"PeriodicalId\":501454,\"journal\":{\"name\":\"medRxiv - Health Informatics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.04.24312866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.04.24312866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

长期以来,在临床决策中,确定哪些特征会影响个体患者的治疗效果一直是一个复杂而关键的问题。来自随机对照试验(RCT)的证据是指导治疗决策的黄金标准。然而,患者的个体差异往往使随机对照试验结果的应用复杂化,导致治疗方案不完善。由于数据维度、类型和研究设计的原因,传统的亚组分析存在不足。为了克服这些局限性,我们提出了 CODE-XAI,这是一个利用可解释人工智能(XAI)解释条件平均治疗效果(CATE)模型的框架,用于进行特征发现。CODE-XAI 提供了个体受试者层面的特征归因,增强了我们对治疗反应的理解。我们使用半合成数据和 RCT 对这些 XAI 方法进行了基准测试,证明了它们在发现特征贡献和实现跨队列分析方面的有效性,从而推动了精准医疗和科学发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CODE - XAI: Construing and Deciphering Treatment Effects via Explainable AI using Real-world Data
Determining which features drive the treatment effect for individual patients has long been a complex and critical question in clinical decision-making. Evidence from randomized controlled trials (RCTs) are the gold standard for guiding treatment decisions. However, individual patient differences often complicate the application of RCT findings, leading to imperfect treatment options. Traditional subgroup analyses fall short due to data dimensionality, type, and study design. To overcome these limitations, we propose CODE-XAI, a framework that interprets Conditional Average Treatment Effect (CATE) models using Explainable AI (XAI) to perform feature discovery. CODE-XAI provides feature attribution at the individual subject level, enhancing our understanding of treatment responses. We benchmark these XAI methods using semi-synthetic data and RCTs, demonstrating their effectiveness in uncovering feature contributions and enabling cross-cohort analysis, advancing precision medicine and scientific discovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A case is not a case is not a case - challenges and solutions in determining urolithiasis caseloads using the digital infrastructure of a clinical data warehouse Reliable Online Auditory Cognitive Testing: An observational study Federated Multiple Imputation for Variables that Are Missing Not At Random in Distributed Electronic Health Records Characterizing the connection between Parkinson's disease progression and healthcare utilization Generative AI and Large Language Models in Reducing Medication Related Harm and Adverse Drug Events - A Scoping Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1