{"title":"受规模和功率限制的临床试验的精确样本量","authors":"Chris J. Lloyd","doi":"10.1111/anzs.12424","DOIUrl":null,"url":null,"abstract":"<p>This paper first describes the difficulties in providing the required sample sizes for clinical trials that guarantee type 1 and type 2 error control. The required sample sizes obviously depend on the test employed, and in this study we use the so-called <i>E</i>-test, which is known to have extremely favourable size properties and higher power than alternatives. To compute exact powers for this test in real time is not currently feasible, so a corpus of pre-computed exact powers (and sizes) was created, covering sample sizes up to 500. When there are no solutions within the corpus, a novel extrapolation technique is used. Exact size can be computed after the sample sizes have been extracted; however, for the <i>E</i>-test the exact size is virtually always very close to the nominal target. All the code has been converted into an <span>R-package</span>, which is available on CRAN and illustrated.</p>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":"66 3","pages":"297-305"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anzs.12424","citationCount":"0","resultStr":"{\"title\":\"Exact samples sizes for clinical trials subject to size and power constraints\",\"authors\":\"Chris J. Lloyd\",\"doi\":\"10.1111/anzs.12424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper first describes the difficulties in providing the required sample sizes for clinical trials that guarantee type 1 and type 2 error control. The required sample sizes obviously depend on the test employed, and in this study we use the so-called <i>E</i>-test, which is known to have extremely favourable size properties and higher power than alternatives. To compute exact powers for this test in real time is not currently feasible, so a corpus of pre-computed exact powers (and sizes) was created, covering sample sizes up to 500. When there are no solutions within the corpus, a novel extrapolation technique is used. Exact size can be computed after the sample sizes have been extracted; however, for the <i>E</i>-test the exact size is virtually always very close to the nominal target. All the code has been converted into an <span>R-package</span>, which is available on CRAN and illustrated.</p>\",\"PeriodicalId\":55428,\"journal\":{\"name\":\"Australian & New Zealand Journal of Statistics\",\"volume\":\"66 3\",\"pages\":\"297-305\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anzs.12424\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian & New Zealand Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12424\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12424","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
摘要 本文首先介绍了为临床试验提供所需的样本量以保证 1 型和 2 型误差控制所面临的困难。所需的样本量显然取决于所采用的检验,在本研究中,我们采用了所谓的 E 检验,众所周知,该检验具有极其有利的样本量特性,且比其他检验具有更高的功率。实时计算该测试的精确幂目前并不可行,因此我们创建了一个预先计算精确幂(和大小)的语料库,涵盖的样本量最高可达 500 个。当语料库中没有解决方案时,就会使用一种新颖的外推法。在提取样本大小后,可以计算精确大小;不过,对于 E 测试,精确大小几乎总是非常接近标称目标。所有代码都已转换成 R 包,可在 CRAN 上获取,并附有图解。
Exact samples sizes for clinical trials subject to size and power constraints
This paper first describes the difficulties in providing the required sample sizes for clinical trials that guarantee type 1 and type 2 error control. The required sample sizes obviously depend on the test employed, and in this study we use the so-called E-test, which is known to have extremely favourable size properties and higher power than alternatives. To compute exact powers for this test in real time is not currently feasible, so a corpus of pre-computed exact powers (and sizes) was created, covering sample sizes up to 500. When there are no solutions within the corpus, a novel extrapolation technique is used. Exact size can be computed after the sample sizes have been extracted; however, for the E-test the exact size is virtually always very close to the nominal target. All the code has been converted into an R-package, which is available on CRAN and illustrated.
期刊介绍:
The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association.
The main body of the journal is divided into three sections.
The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data.
The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context.
The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.