利用集合卡尔曼滤波对二氧化碳羽流动态进行地震监测

Grant Bruer, Abhinav Prakash Gahlot, Edmond Chow, Felix Herrmann
{"title":"利用集合卡尔曼滤波对二氧化碳羽流动态进行地震监测","authors":"Grant Bruer, Abhinav Prakash Gahlot, Edmond Chow, Felix Herrmann","doi":"arxiv-2409.05193","DOIUrl":null,"url":null,"abstract":"Monitoring carbon dioxide (CO2) injected and stored in subsurface reservoirs\nis critical for avoiding failure scenarios and enables real-time optimization\nof CO2 injection rates. Sequential Bayesian data assimilation (DA) is a\nstatistical method for combining information over time from multiple sources to\nestimate a hidden state, such as the spread of the subsurface CO2 plume. An\nexample of scalable and efficient sequential Bayesian DA is the ensemble Kalman\nfilter (EnKF). We improve upon existing DA literature in the seismic-CO2\nmonitoring domain by applying this scalable DA algorithm to a high-dimensional\nCO2 reservoir using two-phase flow dynamics and time-lapse full waveform\nseismic data with a realistic surface-seismic survey design. We show more\naccurate estimates of the CO2 saturation field using the EnKF compared to using\neither the seismic data or the fluid physics alone. Furthermore, we test a\nrange of values for the EnKF hyperparameters and give guidance on their\nselection for seismic CO2 reservoir monitoring.","PeriodicalId":501270,"journal":{"name":"arXiv - PHYS - Geophysics","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic monitoring of CO2 plume dynamics using ensemble Kalman filtering\",\"authors\":\"Grant Bruer, Abhinav Prakash Gahlot, Edmond Chow, Felix Herrmann\",\"doi\":\"arxiv-2409.05193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring carbon dioxide (CO2) injected and stored in subsurface reservoirs\\nis critical for avoiding failure scenarios and enables real-time optimization\\nof CO2 injection rates. Sequential Bayesian data assimilation (DA) is a\\nstatistical method for combining information over time from multiple sources to\\nestimate a hidden state, such as the spread of the subsurface CO2 plume. An\\nexample of scalable and efficient sequential Bayesian DA is the ensemble Kalman\\nfilter (EnKF). We improve upon existing DA literature in the seismic-CO2\\nmonitoring domain by applying this scalable DA algorithm to a high-dimensional\\nCO2 reservoir using two-phase flow dynamics and time-lapse full waveform\\nseismic data with a realistic surface-seismic survey design. We show more\\naccurate estimates of the CO2 saturation field using the EnKF compared to using\\neither the seismic data or the fluid physics alone. Furthermore, we test a\\nrange of values for the EnKF hyperparameters and give guidance on their\\nselection for seismic CO2 reservoir monitoring.\",\"PeriodicalId\":501270,\"journal\":{\"name\":\"arXiv - PHYS - Geophysics\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Geophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对注入和储存在地下储层中的二氧化碳(CO2)进行监测,对于避免出现故障情况和实时优化二氧化碳注入率至关重要。序列贝叶斯数据同化(DA)是一种统计方法,用于结合来自多个来源的长期信息来估计隐藏状态,如地下二氧化碳羽流的扩散。集合卡尔曼滤波器(EnKF)就是可扩展的高效序列贝叶斯数据同化的一个例子。我们将这种可扩展的贝叶斯算法应用于高维 CO2 储层,使用两相流动力学和具有现实地表地震勘测设计的延时全波形地震数据,从而改进了地震-CO2 监测领域现有的贝叶斯算法。与单独使用地震数据或流体物理数据相比,我们使用 EnKF 对二氧化碳饱和度场进行了更精确的估算。此外,我们还测试了一系列 EnKF 超参数值,并为二氧化碳储层地震监测的参数选择提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seismic monitoring of CO2 plume dynamics using ensemble Kalman filtering
Monitoring carbon dioxide (CO2) injected and stored in subsurface reservoirs is critical for avoiding failure scenarios and enables real-time optimization of CO2 injection rates. Sequential Bayesian data assimilation (DA) is a statistical method for combining information over time from multiple sources to estimate a hidden state, such as the spread of the subsurface CO2 plume. An example of scalable and efficient sequential Bayesian DA is the ensemble Kalman filter (EnKF). We improve upon existing DA literature in the seismic-CO2 monitoring domain by applying this scalable DA algorithm to a high-dimensional CO2 reservoir using two-phase flow dynamics and time-lapse full waveform seismic data with a realistic surface-seismic survey design. We show more accurate estimates of the CO2 saturation field using the EnKF compared to using either the seismic data or the fluid physics alone. Furthermore, we test a range of values for the EnKF hyperparameters and give guidance on their selection for seismic CO2 reservoir monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Groundwater dynamics beneath a marine ice sheet Generalized failure law for landslides, rockbursts, glacier breakoffs, and volcanic eruptions DiffESM: Conditional Emulation of Temperature and Precipitation in Earth System Models with 3D Diffusion Models The Arpu Kuilpu Meteorite: In-depth characterization of an H5 chondrite delivered from a Jupiter Family Comet orbit The Sun's Birth Environment: Context for Meteoritics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1