Bo Simmendefeldt Schmidt, Jakob Sauer Jørgensen, José Rueda-Rueda, Joaquín Galdon-Quíroga, Manuel García-Muñoz, Mirko Salewski and the ASDEX Upgrade Team
{"title":"用于快速离子损耗探测器测量反演的各向异性正则化","authors":"Bo Simmendefeldt Schmidt, Jakob Sauer Jørgensen, José Rueda-Rueda, Joaquín Galdon-Quíroga, Manuel García-Muñoz, Mirko Salewski and the ASDEX Upgrade Team","doi":"10.1088/1741-4326/ad75a5","DOIUrl":null,"url":null,"abstract":"We introduce an anisotropic regularization framework for the reconstruction of distribution functions from measurements, utilizing an approach that applies distinct regularization techniques such as non-negative constrained Tikhonov, total variation, and Besov-space priors, either penalizing the one-norm or the two-norm, in each dimension to reflect the anisotropic characteristics of the multidimensional data. This method, applied to fast-ion loss detector (FILD) measurements, demonstrates a significant improvement over conventional nonnegative-constrained zeroth-order Tikhonov regularization because the prior information of the form of the distribution allows better reconstructions. The validity of the approach is corroborated through FILD measurements of prompt fast-ion losses in an ASDEX Upgrade discharge, where the reconstructed distribution function agrees well with the prompt-loss distribution predicted by ASCOT simulations. Moreover, we develop a composite quality metric, Q, that combines the mean squared error and the Jaccard index for a comprehensive evaluation of reconstruction accuracy and spatial fidelity. Finally, anisotropic regularization is applied to FILD measurements at ASDEX Upgrade to study fast-ion acceleration by edge-localized modes. The refined analysis resolves fine structure in the pitch of the accelerated ions and clearly shows that some ions are accelerated to over twice the injection energy.","PeriodicalId":19379,"journal":{"name":"Nuclear Fusion","volume":"19 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropic regularization for inversion of fast-ion loss detector measurements\",\"authors\":\"Bo Simmendefeldt Schmidt, Jakob Sauer Jørgensen, José Rueda-Rueda, Joaquín Galdon-Quíroga, Manuel García-Muñoz, Mirko Salewski and the ASDEX Upgrade Team\",\"doi\":\"10.1088/1741-4326/ad75a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce an anisotropic regularization framework for the reconstruction of distribution functions from measurements, utilizing an approach that applies distinct regularization techniques such as non-negative constrained Tikhonov, total variation, and Besov-space priors, either penalizing the one-norm or the two-norm, in each dimension to reflect the anisotropic characteristics of the multidimensional data. This method, applied to fast-ion loss detector (FILD) measurements, demonstrates a significant improvement over conventional nonnegative-constrained zeroth-order Tikhonov regularization because the prior information of the form of the distribution allows better reconstructions. The validity of the approach is corroborated through FILD measurements of prompt fast-ion losses in an ASDEX Upgrade discharge, where the reconstructed distribution function agrees well with the prompt-loss distribution predicted by ASCOT simulations. Moreover, we develop a composite quality metric, Q, that combines the mean squared error and the Jaccard index for a comprehensive evaluation of reconstruction accuracy and spatial fidelity. Finally, anisotropic regularization is applied to FILD measurements at ASDEX Upgrade to study fast-ion acceleration by edge-localized modes. The refined analysis resolves fine structure in the pitch of the accelerated ions and clearly shows that some ions are accelerated to over twice the injection energy.\",\"PeriodicalId\":19379,\"journal\":{\"name\":\"Nuclear Fusion\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Fusion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-4326/ad75a5\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1741-4326/ad75a5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Anisotropic regularization for inversion of fast-ion loss detector measurements
We introduce an anisotropic regularization framework for the reconstruction of distribution functions from measurements, utilizing an approach that applies distinct regularization techniques such as non-negative constrained Tikhonov, total variation, and Besov-space priors, either penalizing the one-norm or the two-norm, in each dimension to reflect the anisotropic characteristics of the multidimensional data. This method, applied to fast-ion loss detector (FILD) measurements, demonstrates a significant improvement over conventional nonnegative-constrained zeroth-order Tikhonov regularization because the prior information of the form of the distribution allows better reconstructions. The validity of the approach is corroborated through FILD measurements of prompt fast-ion losses in an ASDEX Upgrade discharge, where the reconstructed distribution function agrees well with the prompt-loss distribution predicted by ASCOT simulations. Moreover, we develop a composite quality metric, Q, that combines the mean squared error and the Jaccard index for a comprehensive evaluation of reconstruction accuracy and spatial fidelity. Finally, anisotropic regularization is applied to FILD measurements at ASDEX Upgrade to study fast-ion acceleration by edge-localized modes. The refined analysis resolves fine structure in the pitch of the accelerated ions and clearly shows that some ions are accelerated to over twice the injection energy.
期刊介绍:
Nuclear Fusion publishes articles making significant advances to the field of controlled thermonuclear fusion. The journal scope includes:
-the production, heating and confinement of high temperature plasmas;
-the physical properties of such plasmas;
-the experimental or theoretical methods of exploring or explaining them;
-fusion reactor physics;
-reactor concepts; and
-fusion technologies.
The journal has a dedicated Associate Editor for inertial confinement fusion.