S.A.M. McNamara, A. Alieva, M.S. Anastopoulos Tzanis, O. Asunta, J. Bland, H. Bohlin, P.F. Buxton, C. Colgan, A. Dnestrovskii, E. du Toit, M. Fontana, M. Gemmell, M.P. Gryaznevich, J. Hakosalo, M.R. Hardman, D. Harryman, D. Hoffman, M. Iliasova, S. Janhunen, F. Janky, J.B. Lister, H.F. Lowe, E. Maartensson, C. Marsden, S.Y. Medvedev, S.R. Mirfayzi, M. Moscheni, G. Naylor, V. Nemytov, J. Njau, T. O’Gorman, D. Osin, T. Pyragius, A. Rengle, M. Romanelli, C. Romero, M. Sertoli, V. Shevchenko, J. Sinha, A. Sladkomedova, S. Sridhar, J. Stirling, Y. Takase, P.R. Thomas, J. Varje, E. Vekshina, B. Vincent, H.V. Willett, J. Wood, E. Wooldridge, D. Zakhar, X. Zhang, D. Battaglia, N. Bertelli, P.J. Bonofiglo, L.F. Delgado-Aparicio, V.N. Duarte, N.N. Gorelenkov, M. de Haas, S.M. Kaye, R. Maingi, D. Mueller, M. Ono, M. Podesta, Y. Ren, S. Trieu, E. Delabie, T.K. Gray, B. Lomanowski, E.A. Unterberg, O. Marchuk, the ST40 Team1
{"title":"ST40 紧凑型高磁场球形托卡马克最新成果概览","authors":"S.A.M. McNamara, A. Alieva, M.S. Anastopoulos Tzanis, O. Asunta, J. Bland, H. Bohlin, P.F. Buxton, C. Colgan, A. Dnestrovskii, E. du Toit, M. Fontana, M. Gemmell, M.P. Gryaznevich, J. Hakosalo, M.R. Hardman, D. Harryman, D. Hoffman, M. Iliasova, S. Janhunen, F. Janky, J.B. Lister, H.F. Lowe, E. Maartensson, C. Marsden, S.Y. Medvedev, S.R. Mirfayzi, M. Moscheni, G. Naylor, V. Nemytov, J. Njau, T. O’Gorman, D. Osin, T. Pyragius, A. Rengle, M. Romanelli, C. Romero, M. Sertoli, V. Shevchenko, J. Sinha, A. Sladkomedova, S. Sridhar, J. Stirling, Y. Takase, P.R. Thomas, J. Varje, E. Vekshina, B. Vincent, H.V. Willett, J. Wood, E. Wooldridge, D. Zakhar, X. Zhang, D. Battaglia, N. Bertelli, P.J. Bonofiglo, L.F. Delgado-Aparicio, V.N. Duarte, N.N. Gorelenkov, M. de Haas, S.M. Kaye, R. Maingi, D. Mueller, M. Ono, M. Podesta, Y. Ren, S. Trieu, E. Delabie, T.K. Gray, B. Lomanowski, E.A. Unterberg, O. Marchuk, the ST40 Team1","doi":"10.1088/1741-4326/ad6ba7","DOIUrl":null,"url":null,"abstract":"ST40 is a compact, high-field (<inline-formula>\n<tex-math><?CDATA $B_{\\mathrm{T0}}\\unicode{x2A7D} 2.1\\,\\,\\,\\textrm{T}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>B</mml:mi><mml:mrow><mml:mrow><mml:mi mathvariant=\"normal\">T</mml:mi><mml:mn>0</mml:mn></mml:mrow></mml:mrow></mml:msub><mml:mtext>⩽</mml:mtext><mml:mn>2.1</mml:mn><mml:mstyle scriptlevel=\"0\"></mml:mstyle><mml:mstyle scriptlevel=\"0\"></mml:mstyle><mml:mstyle scriptlevel=\"0\"></mml:mstyle><mml:mtext>T</mml:mtext></mml:mrow></mml:math><inline-graphic xlink:href=\"nfad6ba7ieqn1.gif\"></inline-graphic></inline-formula>) spherical tokamak (ST) with a mission to expand the physics and technology basis for the ST route to commercial fusion. The ST40 research programme covers confinement and stability; solenoid-free start-up; high-performance operating scenarios; and plasma exhaust. In 2022, ST40 obtained central deuterium ion temperatures of <inline-formula>\n<tex-math><?CDATA $9.6 \\pm 0.4\\ \\textrm{keV}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mn>9.6</mml:mn><mml:mo>±</mml:mo><mml:mn>0.4</mml:mn><mml:mtext> </mml:mtext><mml:mtext>keV</mml:mtext></mml:mrow></mml:math><inline-graphic xlink:href=\"nfad6ba7ieqn2.gif\"></inline-graphic></inline-formula>, demonstrating for the first time that pilot plant relevant ion temperatures can be reached in a compact, high-field ST. Analysis of these high-ion temperature plasmas is presented, including a summary of confinement, transport and microstability characteristics, and energetic particle instabilities. Recent scenario development activities have focused on establishing diverted H-mode plasmas across a range of toroidal fields and plasma currents, along with scenarios with high non-inductive current fractions. In future operations, beginning in 2025, a 1 MW dual frequency (104/137 GHz) electron cyclotron (EC) system will be installed to enable the study of EC and electron Bernstein wave plasma start-up and current drive. Predictive modelling of the potential performance of these systems is presented.","PeriodicalId":19379,"journal":{"name":"Nuclear Fusion","volume":"46 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overview of recent results from the ST40 compact high-field spherical tokamak\",\"authors\":\"S.A.M. McNamara, A. Alieva, M.S. Anastopoulos Tzanis, O. Asunta, J. Bland, H. Bohlin, P.F. Buxton, C. Colgan, A. Dnestrovskii, E. du Toit, M. Fontana, M. Gemmell, M.P. Gryaznevich, J. Hakosalo, M.R. Hardman, D. Harryman, D. Hoffman, M. Iliasova, S. Janhunen, F. Janky, J.B. Lister, H.F. Lowe, E. Maartensson, C. Marsden, S.Y. Medvedev, S.R. Mirfayzi, M. Moscheni, G. Naylor, V. Nemytov, J. Njau, T. O’Gorman, D. Osin, T. Pyragius, A. Rengle, M. Romanelli, C. Romero, M. Sertoli, V. Shevchenko, J. Sinha, A. Sladkomedova, S. Sridhar, J. Stirling, Y. Takase, P.R. Thomas, J. Varje, E. Vekshina, B. Vincent, H.V. Willett, J. Wood, E. Wooldridge, D. Zakhar, X. Zhang, D. Battaglia, N. Bertelli, P.J. Bonofiglo, L.F. Delgado-Aparicio, V.N. Duarte, N.N. Gorelenkov, M. de Haas, S.M. Kaye, R. Maingi, D. Mueller, M. Ono, M. Podesta, Y. Ren, S. Trieu, E. Delabie, T.K. Gray, B. Lomanowski, E.A. Unterberg, O. Marchuk, the ST40 Team1\",\"doi\":\"10.1088/1741-4326/ad6ba7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ST40 is a compact, high-field (<inline-formula>\\n<tex-math><?CDATA $B_{\\\\mathrm{T0}}\\\\unicode{x2A7D} 2.1\\\\,\\\\,\\\\,\\\\textrm{T}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>B</mml:mi><mml:mrow><mml:mrow><mml:mi mathvariant=\\\"normal\\\">T</mml:mi><mml:mn>0</mml:mn></mml:mrow></mml:mrow></mml:msub><mml:mtext>⩽</mml:mtext><mml:mn>2.1</mml:mn><mml:mstyle scriptlevel=\\\"0\\\"></mml:mstyle><mml:mstyle scriptlevel=\\\"0\\\"></mml:mstyle><mml:mstyle scriptlevel=\\\"0\\\"></mml:mstyle><mml:mtext>T</mml:mtext></mml:mrow></mml:math><inline-graphic xlink:href=\\\"nfad6ba7ieqn1.gif\\\"></inline-graphic></inline-formula>) spherical tokamak (ST) with a mission to expand the physics and technology basis for the ST route to commercial fusion. The ST40 research programme covers confinement and stability; solenoid-free start-up; high-performance operating scenarios; and plasma exhaust. In 2022, ST40 obtained central deuterium ion temperatures of <inline-formula>\\n<tex-math><?CDATA $9.6 \\\\pm 0.4\\\\ \\\\textrm{keV}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mn>9.6</mml:mn><mml:mo>±</mml:mo><mml:mn>0.4</mml:mn><mml:mtext> </mml:mtext><mml:mtext>keV</mml:mtext></mml:mrow></mml:math><inline-graphic xlink:href=\\\"nfad6ba7ieqn2.gif\\\"></inline-graphic></inline-formula>, demonstrating for the first time that pilot plant relevant ion temperatures can be reached in a compact, high-field ST. Analysis of these high-ion temperature plasmas is presented, including a summary of confinement, transport and microstability characteristics, and energetic particle instabilities. Recent scenario development activities have focused on establishing diverted H-mode plasmas across a range of toroidal fields and plasma currents, along with scenarios with high non-inductive current fractions. In future operations, beginning in 2025, a 1 MW dual frequency (104/137 GHz) electron cyclotron (EC) system will be installed to enable the study of EC and electron Bernstein wave plasma start-up and current drive. Predictive modelling of the potential performance of these systems is presented.\",\"PeriodicalId\":19379,\"journal\":{\"name\":\"Nuclear Fusion\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Fusion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-4326/ad6ba7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1741-4326/ad6ba7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
摘要
ST40 是一个结构紧凑的高磁场(BT0⩽2.1T)球形托卡马克(ST),其任务是为商业核聚变的 ST 路线扩大物理和技术基础。ST40 研究计划涵盖约束和稳定性、无螺线管启动、高性能运行方案和等离子体排气。2022 年,ST40 获得了 9.6±0.4 千伏的中心氘离子温度,首次证明了在紧凑型高场 ST 中可以达到与试验工厂相关的离子温度。本文介绍了对这些高离子温度等离子体的分析,包括对约束、传输和微稳定性特征以及高能粒子不稳定性的总结。最近的方案开发活动侧重于在一系列环形场和等离子体电流范围内建立分流 H 模式等离子体,以及具有高非感应电流分数的方案。在未来的运行中,从 2025 年开始,将安装一个 1 兆瓦的双频(104/137 千兆赫)电子回旋加速器(EC)系统,以研究 EC 和电子伯恩斯坦波等离子体的启动和电流驱动。介绍了这些系统潜在性能的预测模型。
Overview of recent results from the ST40 compact high-field spherical tokamak
ST40 is a compact, high-field (BT0⩽2.1T) spherical tokamak (ST) with a mission to expand the physics and technology basis for the ST route to commercial fusion. The ST40 research programme covers confinement and stability; solenoid-free start-up; high-performance operating scenarios; and plasma exhaust. In 2022, ST40 obtained central deuterium ion temperatures of 9.6±0.4keV, demonstrating for the first time that pilot plant relevant ion temperatures can be reached in a compact, high-field ST. Analysis of these high-ion temperature plasmas is presented, including a summary of confinement, transport and microstability characteristics, and energetic particle instabilities. Recent scenario development activities have focused on establishing diverted H-mode plasmas across a range of toroidal fields and plasma currents, along with scenarios with high non-inductive current fractions. In future operations, beginning in 2025, a 1 MW dual frequency (104/137 GHz) electron cyclotron (EC) system will be installed to enable the study of EC and electron Bernstein wave plasma start-up and current drive. Predictive modelling of the potential performance of these systems is presented.
期刊介绍:
Nuclear Fusion publishes articles making significant advances to the field of controlled thermonuclear fusion. The journal scope includes:
-the production, heating and confinement of high temperature plasmas;
-the physical properties of such plasmas;
-the experimental or theoretical methods of exploring or explaining them;
-fusion reactor physics;
-reactor concepts; and
-fusion technologies.
The journal has a dedicated Associate Editor for inertial confinement fusion.