Yueqiang Liu, Xue Bai, Y. Gribov, F. Koechl, A. Loarte, S.D. Pinches, L. Schmitz
{"title":"国际热核聚变实验堆增强型第一等离子体运行阶段波纹诱发的新古典环形粘性转矩","authors":"Yueqiang Liu, Xue Bai, Y. Gribov, F. Koechl, A. Loarte, S.D. Pinches, L. Schmitz","doi":"10.1088/1741-4326/ad70cb","DOIUrl":null,"url":null,"abstract":"A systematic calculation is performed on the ripple-induced neoclassical toroidal viscous (NTV) torque for new ITER scenarios designed for the Augmented-First Plasma (A-FP) operation phase with the full tungsten wall, where the plasma-wall gap is varied in view of mitigating the impact of tungsten wall-plasma interactions. The torque calculation includes drift kinetic response of the plasma thermal and energetic particles to the <italic toggle=\"yes\">n</italic> = 18 (<italic toggle=\"yes\">n</italic> is the toroidal harmonic number) ripple field. For the plasma scenario with ~45 cm plasma-wall gap at the outboard mid-plane and considering the corrected ripple level of 0.17% by the ferritic steel inserts, the computed net NTV torque acting on the plasma column is in the sub-Nm level. However, with decreasing the plasma-wall gap, the computed net NTV torque can reach a level comparable to that produced by the neutral-beam momentum injection in ITER. Ripple correction by ferritic inserts reduces the net torque by a factor of 3.3 for all the three A-FP scenarios considered. The <inline-formula>\n<tex-math><?CDATA $n\\omega_d = l\\omega_b$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>n</mml:mi><mml:msub><mml:mi>ω</mml:mi><mml:mi>d</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mi>l</mml:mi><mml:msub><mml:mi>ω</mml:mi><mml:mi>b</mml:mi></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"nfad70cbieqn1.gif\"></inline-graphic></inline-formula> (with <italic toggle=\"yes\">ω</italic><sub><italic toggle=\"yes\">d</italic></sub> and <italic toggle=\"yes\">ω</italic><sub><italic toggle=\"yes\">b</italic></sub> being the toroidal precession and bounce frequencies of trapped particles, respectively, and <italic toggle=\"yes\">l</italic> an integer number) type of resonance-enhancement of the NTV torque, due to thermal particles, is found to be weak in ITER despite high-<italic toggle=\"yes\">n</italic> of 18. The same also holds for the ITER 10 MA steady state scenario from the D-T operation phase, where the aforementioned resonance associated with fusion-born alphas is also included. The ripple-induced NTV torque is well below that produced by the resonant magnetic perturbation applied for controlling the type-I edge-localized mode in ITER.","PeriodicalId":19379,"journal":{"name":"Nuclear Fusion","volume":"3 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ripple-induced neoclassical toroidal viscous torque in Augmented-First Plasma operation phase in ITER\",\"authors\":\"Yueqiang Liu, Xue Bai, Y. Gribov, F. Koechl, A. Loarte, S.D. Pinches, L. Schmitz\",\"doi\":\"10.1088/1741-4326/ad70cb\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A systematic calculation is performed on the ripple-induced neoclassical toroidal viscous (NTV) torque for new ITER scenarios designed for the Augmented-First Plasma (A-FP) operation phase with the full tungsten wall, where the plasma-wall gap is varied in view of mitigating the impact of tungsten wall-plasma interactions. The torque calculation includes drift kinetic response of the plasma thermal and energetic particles to the <italic toggle=\\\"yes\\\">n</italic> = 18 (<italic toggle=\\\"yes\\\">n</italic> is the toroidal harmonic number) ripple field. For the plasma scenario with ~45 cm plasma-wall gap at the outboard mid-plane and considering the corrected ripple level of 0.17% by the ferritic steel inserts, the computed net NTV torque acting on the plasma column is in the sub-Nm level. However, with decreasing the plasma-wall gap, the computed net NTV torque can reach a level comparable to that produced by the neutral-beam momentum injection in ITER. Ripple correction by ferritic inserts reduces the net torque by a factor of 3.3 for all the three A-FP scenarios considered. The <inline-formula>\\n<tex-math><?CDATA $n\\\\omega_d = l\\\\omega_b$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>n</mml:mi><mml:msub><mml:mi>ω</mml:mi><mml:mi>d</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mi>l</mml:mi><mml:msub><mml:mi>ω</mml:mi><mml:mi>b</mml:mi></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\\\"nfad70cbieqn1.gif\\\"></inline-graphic></inline-formula> (with <italic toggle=\\\"yes\\\">ω</italic><sub><italic toggle=\\\"yes\\\">d</italic></sub> and <italic toggle=\\\"yes\\\">ω</italic><sub><italic toggle=\\\"yes\\\">b</italic></sub> being the toroidal precession and bounce frequencies of trapped particles, respectively, and <italic toggle=\\\"yes\\\">l</italic> an integer number) type of resonance-enhancement of the NTV torque, due to thermal particles, is found to be weak in ITER despite high-<italic toggle=\\\"yes\\\">n</italic> of 18. The same also holds for the ITER 10 MA steady state scenario from the D-T operation phase, where the aforementioned resonance associated with fusion-born alphas is also included. The ripple-induced NTV torque is well below that produced by the resonant magnetic perturbation applied for controlling the type-I edge-localized mode in ITER.\",\"PeriodicalId\":19379,\"journal\":{\"name\":\"Nuclear Fusion\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Fusion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-4326/ad70cb\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1741-4326/ad70cb","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
摘要
针对为全钨壁增强第一等离子体(A-FP)运行阶段设计的新热核实验堆方案,对波纹引起的新古典环形粘性(NTV)扭矩进行了系统计算。扭矩计算包括等离子体热粒子和高能粒子对 n = 18(n 为环形谐波数)波纹场的漂移动力学响应。在等离子体外侧中平面的等离子体壁间隙约为 45 厘米的情况下,考虑到铁素体钢插入件的校正波纹水平为 0.17%,计算出的作用于等离子体柱的净 NTV 扭矩处于亚 Nm 水平。然而,随着等离子体壁间隙的减小,计算出的净 NTV 扭矩可以达到与热核实验堆中中性束动量注入所产生的扭矩相当的水平。在考虑的所有三种 A-FP 方案中,通过铁素体插件进行波纹校正可将净扭矩降低 3.3 倍。nωd=lωb(ωd 和 ωb 分别为被困粒子的环向前驱和反弹频率,l 为整数)是热粒子导致的 NTV 扭矩共振增强类型,尽管 ITER 中的 n 高达 18,但这种共振增强很弱。同样的情况也适用于从 D-T 运行阶段开始的热核实验堆 10 MA 稳态方案,其中也包括上述与核聚变产生的字母相关的共振。纹波引起的 NTV 扭矩远低于用于控制热核实验堆中 I 型边缘定位模式的共振磁扰动所产生的 NTV 扭矩。
Ripple-induced neoclassical toroidal viscous torque in Augmented-First Plasma operation phase in ITER
A systematic calculation is performed on the ripple-induced neoclassical toroidal viscous (NTV) torque for new ITER scenarios designed for the Augmented-First Plasma (A-FP) operation phase with the full tungsten wall, where the plasma-wall gap is varied in view of mitigating the impact of tungsten wall-plasma interactions. The torque calculation includes drift kinetic response of the plasma thermal and energetic particles to the n = 18 (n is the toroidal harmonic number) ripple field. For the plasma scenario with ~45 cm plasma-wall gap at the outboard mid-plane and considering the corrected ripple level of 0.17% by the ferritic steel inserts, the computed net NTV torque acting on the plasma column is in the sub-Nm level. However, with decreasing the plasma-wall gap, the computed net NTV torque can reach a level comparable to that produced by the neutral-beam momentum injection in ITER. Ripple correction by ferritic inserts reduces the net torque by a factor of 3.3 for all the three A-FP scenarios considered. The nωd=lωb (with ωd and ωb being the toroidal precession and bounce frequencies of trapped particles, respectively, and l an integer number) type of resonance-enhancement of the NTV torque, due to thermal particles, is found to be weak in ITER despite high-n of 18. The same also holds for the ITER 10 MA steady state scenario from the D-T operation phase, where the aforementioned resonance associated with fusion-born alphas is also included. The ripple-induced NTV torque is well below that produced by the resonant magnetic perturbation applied for controlling the type-I edge-localized mode in ITER.
期刊介绍:
Nuclear Fusion publishes articles making significant advances to the field of controlled thermonuclear fusion. The journal scope includes:
-the production, heating and confinement of high temperature plasmas;
-the physical properties of such plasmas;
-the experimental or theoretical methods of exploring or explaining them;
-fusion reactor physics;
-reactor concepts; and
-fusion technologies.
The journal has a dedicated Associate Editor for inertial confinement fusion.