N.J. Richner, L. Bardóczi, J.D. Callen, R.J. La Haye, N.C. Logan, E.J. Strait
{"title":"利用差分等离子体旋转防止 3 波耦合产生破坏性撕裂模式","authors":"N.J. Richner, L. Bardóczi, J.D. Callen, R.J. La Haye, N.C. Logan, E.J. Strait","doi":"10.1088/1741-4326/ad7273","DOIUrl":null,"url":null,"abstract":"Plasma differential rotation is found to be capable of preventing disruptive neoclassical tearing modes (NTMs) seeded by nonlinear three-wave coupling. As tearing modes degrade confinement and can lead to disruptions, stabilization strategies are crucial to the successful operation of future devices. In ITER-relevant scenarios on DIII-D, rotationally coupled <inline-formula>\n<tex-math><?CDATA $m/n$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>m</mml:mi><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\"nfad7273ieqn1.gif\"></inline-graphic></inline-formula> = 1/1 and 3/2 modes have been observed to drive 2/1 islands through three-wave coupling. The frequency of the driven 2/1 mode is set by matching conditions and the frequencies of the driving modes. When the driven mode frequency matches the local plasma rotation frequency, e.g. at low differential rotation, the driven 2/1 island can grow into a disruptive NTM. Using neutral beam torque as an actuator to scan the differential rotation, these experiments demonstrate that a sufficiently large frequency mismatch prevents destabilization of disruptive 2/1 NTMs by three-wave coupling. This work indicates that differential rotation can be used as an actuator to prevent NTMs seeded by three-wave coupling.","PeriodicalId":19379,"journal":{"name":"Nuclear Fusion","volume":"7 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of differential plasma rotation to prevent disruptive tearing mode onset from 3-wave coupling\",\"authors\":\"N.J. Richner, L. Bardóczi, J.D. Callen, R.J. La Haye, N.C. Logan, E.J. Strait\",\"doi\":\"10.1088/1741-4326/ad7273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plasma differential rotation is found to be capable of preventing disruptive neoclassical tearing modes (NTMs) seeded by nonlinear three-wave coupling. As tearing modes degrade confinement and can lead to disruptions, stabilization strategies are crucial to the successful operation of future devices. In ITER-relevant scenarios on DIII-D, rotationally coupled <inline-formula>\\n<tex-math><?CDATA $m/n$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>m</mml:mi><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\\\"nfad7273ieqn1.gif\\\"></inline-graphic></inline-formula> = 1/1 and 3/2 modes have been observed to drive 2/1 islands through three-wave coupling. The frequency of the driven 2/1 mode is set by matching conditions and the frequencies of the driving modes. When the driven mode frequency matches the local plasma rotation frequency, e.g. at low differential rotation, the driven 2/1 island can grow into a disruptive NTM. Using neutral beam torque as an actuator to scan the differential rotation, these experiments demonstrate that a sufficiently large frequency mismatch prevents destabilization of disruptive 2/1 NTMs by three-wave coupling. This work indicates that differential rotation can be used as an actuator to prevent NTMs seeded by three-wave coupling.\",\"PeriodicalId\":19379,\"journal\":{\"name\":\"Nuclear Fusion\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Fusion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-4326/ad7273\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1741-4326/ad7273","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Use of differential plasma rotation to prevent disruptive tearing mode onset from 3-wave coupling
Plasma differential rotation is found to be capable of preventing disruptive neoclassical tearing modes (NTMs) seeded by nonlinear three-wave coupling. As tearing modes degrade confinement and can lead to disruptions, stabilization strategies are crucial to the successful operation of future devices. In ITER-relevant scenarios on DIII-D, rotationally coupled m/n = 1/1 and 3/2 modes have been observed to drive 2/1 islands through three-wave coupling. The frequency of the driven 2/1 mode is set by matching conditions and the frequencies of the driving modes. When the driven mode frequency matches the local plasma rotation frequency, e.g. at low differential rotation, the driven 2/1 island can grow into a disruptive NTM. Using neutral beam torque as an actuator to scan the differential rotation, these experiments demonstrate that a sufficiently large frequency mismatch prevents destabilization of disruptive 2/1 NTMs by three-wave coupling. This work indicates that differential rotation can be used as an actuator to prevent NTMs seeded by three-wave coupling.
期刊介绍:
Nuclear Fusion publishes articles making significant advances to the field of controlled thermonuclear fusion. The journal scope includes:
-the production, heating and confinement of high temperature plasmas;
-the physical properties of such plasmas;
-the experimental or theoretical methods of exploring or explaining them;
-fusion reactor physics;
-reactor concepts; and
-fusion technologies.
The journal has a dedicated Associate Editor for inertial confinement fusion.