{"title":"可实现热启动的二阶圆锥程序的二次收敛顺序编程法","authors":"Xinyi Luo, Andreas Wächter","doi":"10.1137/22m1507681","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 3, Page 2943-2972, September 2024. <br/> Abstract. We propose a new method for linear second-order cone programs. It is based on the sequential quadratic programming framework for nonlinear programming. In contrast to interior point methods, it can capitalize on the warm-start capabilities of active-set quadratic programming subproblem solvers and achieve a local quadratic rate of convergence. In order to overcome the nondifferentiability or singularity observed in nonlinear formulations of the conic constraints, the subproblems approximate the cones with polyhedral outer approximations that are refined throughout the iterations. For nondegenerate instances, the algorithm implicitly identifies the set of cones for which the optimal solution lies at the extreme points. As a consequence, the final steps are identical to regular sequential quadratic programming steps for a differentiable nonlinear optimization problem, yielding local quadratic convergence. We prove the global and local convergence guarantees of the method and present numerical experiments that confirm that the method can take advantage of good starting points and can achieve higher accuracy compared to a state-of-the-art interior point solver.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Quadratically Convergent Sequential Programming Method for Second-Order Cone Programs Capable of Warm Starts\",\"authors\":\"Xinyi Luo, Andreas Wächter\",\"doi\":\"10.1137/22m1507681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Optimization, Volume 34, Issue 3, Page 2943-2972, September 2024. <br/> Abstract. We propose a new method for linear second-order cone programs. It is based on the sequential quadratic programming framework for nonlinear programming. In contrast to interior point methods, it can capitalize on the warm-start capabilities of active-set quadratic programming subproblem solvers and achieve a local quadratic rate of convergence. In order to overcome the nondifferentiability or singularity observed in nonlinear formulations of the conic constraints, the subproblems approximate the cones with polyhedral outer approximations that are refined throughout the iterations. For nondegenerate instances, the algorithm implicitly identifies the set of cones for which the optimal solution lies at the extreme points. As a consequence, the final steps are identical to regular sequential quadratic programming steps for a differentiable nonlinear optimization problem, yielding local quadratic convergence. We prove the global and local convergence guarantees of the method and present numerical experiments that confirm that the method can take advantage of good starting points and can achieve higher accuracy compared to a state-of-the-art interior point solver.\",\"PeriodicalId\":49529,\"journal\":{\"name\":\"SIAM Journal on Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1507681\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1507681","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A Quadratically Convergent Sequential Programming Method for Second-Order Cone Programs Capable of Warm Starts
SIAM Journal on Optimization, Volume 34, Issue 3, Page 2943-2972, September 2024. Abstract. We propose a new method for linear second-order cone programs. It is based on the sequential quadratic programming framework for nonlinear programming. In contrast to interior point methods, it can capitalize on the warm-start capabilities of active-set quadratic programming subproblem solvers and achieve a local quadratic rate of convergence. In order to overcome the nondifferentiability or singularity observed in nonlinear formulations of the conic constraints, the subproblems approximate the cones with polyhedral outer approximations that are refined throughout the iterations. For nondegenerate instances, the algorithm implicitly identifies the set of cones for which the optimal solution lies at the extreme points. As a consequence, the final steps are identical to regular sequential quadratic programming steps for a differentiable nonlinear optimization problem, yielding local quadratic convergence. We prove the global and local convergence guarantees of the method and present numerical experiments that confirm that the method can take advantage of good starting points and can achieve higher accuracy compared to a state-of-the-art interior point solver.
期刊介绍:
The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.