可因式编程中的 MIP 放松

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED SIAM Journal on Optimization Pub Date : 2024-08-26 DOI:10.1137/22m1515537
Taotao He, Mohit Tawarmalani
{"title":"可因式编程中的 MIP 放松","authors":"Taotao He, Mohit Tawarmalani","doi":"10.1137/22m1515537","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 3, Page 2856-2882, September 2024. <br/> Abstract. In this paper, we develop new discrete relaxations for nonlinear expressions in factorable programming. We utilize specialized convexification results as well as composite relaxations to develop mixed-integer programming relaxations. Our relaxations rely on ideal formulations of convex hulls of outer-functions over a combinatorial structure that captures local inner-function structure. The resulting relaxations often require fewer variables and are tighter than currently prevalent ones. Finally, we provide computational evidence to demonstrate that our relaxations close approximately 60%–70% of the gap relative to McCormick relaxations and significantly improve the relaxations used in a state-of-the-art solver on various instances involving polynomial functions.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MIP Relaxations in Factorable Programming\",\"authors\":\"Taotao He, Mohit Tawarmalani\",\"doi\":\"10.1137/22m1515537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Optimization, Volume 34, Issue 3, Page 2856-2882, September 2024. <br/> Abstract. In this paper, we develop new discrete relaxations for nonlinear expressions in factorable programming. We utilize specialized convexification results as well as composite relaxations to develop mixed-integer programming relaxations. Our relaxations rely on ideal formulations of convex hulls of outer-functions over a combinatorial structure that captures local inner-function structure. The resulting relaxations often require fewer variables and are tighter than currently prevalent ones. Finally, we provide computational evidence to demonstrate that our relaxations close approximately 60%–70% of the gap relative to McCormick relaxations and significantly improve the relaxations used in a state-of-the-art solver on various instances involving polynomial functions.\",\"PeriodicalId\":49529,\"journal\":{\"name\":\"SIAM Journal on Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1515537\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1515537","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 优化期刊》,第 34 卷第 3 期,第 2856-2882 页,2024 年 9 月。 摘要本文为可因式编程中的非线性表达式开发了新的离散松弛。我们利用专门的凸化结果以及复合松弛来开发混合整数编程松弛。我们的松弛方法依赖于外函数在组合结构上的凸壳的理想表述,该组合结构捕捉了局部的内函数结构。由此产生的松弛往往需要更少的变量,而且比目前流行的松弛更严密。最后,我们提供了计算证据,证明我们的松弛方法缩小了与麦考密克松弛方法约 60%-70% 的差距,并在涉及多项式函数的各种实例上显著改善了最先进求解器中使用的松弛方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MIP Relaxations in Factorable Programming
SIAM Journal on Optimization, Volume 34, Issue 3, Page 2856-2882, September 2024.
Abstract. In this paper, we develop new discrete relaxations for nonlinear expressions in factorable programming. We utilize specialized convexification results as well as composite relaxations to develop mixed-integer programming relaxations. Our relaxations rely on ideal formulations of convex hulls of outer-functions over a combinatorial structure that captures local inner-function structure. The resulting relaxations often require fewer variables and are tighter than currently prevalent ones. Finally, we provide computational evidence to demonstrate that our relaxations close approximately 60%–70% of the gap relative to McCormick relaxations and significantly improve the relaxations used in a state-of-the-art solver on various instances involving polynomial functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
期刊最新文献
Corrigendum and Addendum: Newton Differentiability of Convex Functions in Normed Spaces and of a Class of Operators Newton-Based Alternating Methods for the Ground State of a Class of Multicomponent Bose–Einstein Condensates Minimum Spanning Trees in Infinite Graphs: Theory and Algorithms On Minimal Extended Representations of Generalized Power Cones A Functional Model Method for Nonconvex Nonsmooth Conditional Stochastic Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1