{"title":"论空间周期介质中燃烧方程的移动前沿","authors":"Yasheng Lyu, Hongjun Guo, Zhi-Cheng Wang","doi":"10.1007/s10884-024-10388-1","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with traveling fronts of spatially periodic reaction–diffusion equations with combustion nonlinearity in <span>\\(\\mathbb {R}^N\\)</span>. It is known that for any given propagation direction <span>\\(e\\in \\mathbb {S}^{N-1}\\)</span>, the equation admits a pulsating front connecting two equilibria 0 and 1. In this paper we firstly give exact asymptotic behaviors of the pulsating front and its derivatives at infinity, and establish uniform decay estimates of the pulsating fronts at infinity on the propagation direction <span>\\(e\\in \\mathbb {S}^{N-1}\\)</span>. Following the uniform estimates, we then show continuous Fréchet differentiability of the pulsating fronts with respect to the propagation direction. Lastly, using the differentiability, we establish the existence, uniqueness and stability of curved fronts with V-shape in <span>\\(\\mathbb {R}^2\\)</span> by constructing suitable super- and subsolutions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Traveling Fronts of Combustion Equations in Spatially Periodic Media\",\"authors\":\"Yasheng Lyu, Hongjun Guo, Zhi-Cheng Wang\",\"doi\":\"10.1007/s10884-024-10388-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is concerned with traveling fronts of spatially periodic reaction–diffusion equations with combustion nonlinearity in <span>\\\\(\\\\mathbb {R}^N\\\\)</span>. It is known that for any given propagation direction <span>\\\\(e\\\\in \\\\mathbb {S}^{N-1}\\\\)</span>, the equation admits a pulsating front connecting two equilibria 0 and 1. In this paper we firstly give exact asymptotic behaviors of the pulsating front and its derivatives at infinity, and establish uniform decay estimates of the pulsating fronts at infinity on the propagation direction <span>\\\\(e\\\\in \\\\mathbb {S}^{N-1}\\\\)</span>. Following the uniform estimates, we then show continuous Fréchet differentiability of the pulsating fronts with respect to the propagation direction. Lastly, using the differentiability, we establish the existence, uniqueness and stability of curved fronts with V-shape in <span>\\\\(\\\\mathbb {R}^2\\\\)</span> by constructing suitable super- and subsolutions.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10884-024-10388-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10884-024-10388-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本文关注的是\(\mathbb {R}^{N}\)中具有燃烧非线性的空间周期性反应-扩散方程的行进前沿。本文首先给出了脉动前沿及其导数在无穷远处的精确渐近行为,并建立了脉动前沿在无穷远处对传播方向 \(e\in \mathbb {S}^{N-1}\) 的均匀衰减估计。在均匀估计之后,我们证明了脉动前沿关于传播方向的连续弗雷谢特可微分性。最后,利用可微分性,我们通过构造合适的超解和子解,建立了在\(\mathbb {R}^2\) 中具有 V 形的弯曲前沿的存在性、唯一性和稳定性。
On Traveling Fronts of Combustion Equations in Spatially Periodic Media
This paper is concerned with traveling fronts of spatially periodic reaction–diffusion equations with combustion nonlinearity in \(\mathbb {R}^N\). It is known that for any given propagation direction \(e\in \mathbb {S}^{N-1}\), the equation admits a pulsating front connecting two equilibria 0 and 1. In this paper we firstly give exact asymptotic behaviors of the pulsating front and its derivatives at infinity, and establish uniform decay estimates of the pulsating fronts at infinity on the propagation direction \(e\in \mathbb {S}^{N-1}\). Following the uniform estimates, we then show continuous Fréchet differentiability of the pulsating fronts with respect to the propagation direction. Lastly, using the differentiability, we establish the existence, uniqueness and stability of curved fronts with V-shape in \(\mathbb {R}^2\) by constructing suitable super- and subsolutions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.