Simone A Baechler, Liton Kumar Saha, Valentina M Factor, Chaitali Chitinis, Anjali Dhall, Diana Becker, Jens U Marquardt, Yves Pommier
{"title":"线粒体拓扑异构酶 I(Top1MT)可预防小鼠代谢功能障碍相关性脂肪性肝炎(MASH)的发生","authors":"Simone A Baechler, Liton Kumar Saha, Valentina M Factor, Chaitali Chitinis, Anjali Dhall, Diana Becker, Jens U Marquardt, Yves Pommier","doi":"10.1101/2024.09.05.611454","DOIUrl":null,"url":null,"abstract":"High fat (HF) diet is a major factor in the development of metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatis (MASH), and mitochondria have been proposed to play a role in the pathogenesis of HF diet-induced MASH. Because Mitochondrial topoisomerase I (Top1MT) is exclusively present in mitochondria and Top1MT knock-out mice are viable, we were able to assess the role of Top1MT in the development of MASH. We show that after 16 weeks of HF diet, mice lacking Top1MT are prone to the development of severe MASH characterized by liver steatosis, lobular inflammation and hepatocyte damage. Mice lacking Top1MT also show prominent mitochondrial dysfunction, ROS production and mitochondrial DNA (mtDNA) release, accompanied by hepatic inflammation and fibrosis. In summary, our study demonstrates the importance of Top1MT in sustaining hepatocyte functions and suppressing MASH.","PeriodicalId":501108,"journal":{"name":"bioRxiv - Molecular Biology","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitochondrial topoisomerase I (Top1MT) prevents the onset of metabolic dysfunction-associated steatohepatitis (MASH) in mice\",\"authors\":\"Simone A Baechler, Liton Kumar Saha, Valentina M Factor, Chaitali Chitinis, Anjali Dhall, Diana Becker, Jens U Marquardt, Yves Pommier\",\"doi\":\"10.1101/2024.09.05.611454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High fat (HF) diet is a major factor in the development of metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatis (MASH), and mitochondria have been proposed to play a role in the pathogenesis of HF diet-induced MASH. Because Mitochondrial topoisomerase I (Top1MT) is exclusively present in mitochondria and Top1MT knock-out mice are viable, we were able to assess the role of Top1MT in the development of MASH. We show that after 16 weeks of HF diet, mice lacking Top1MT are prone to the development of severe MASH characterized by liver steatosis, lobular inflammation and hepatocyte damage. Mice lacking Top1MT also show prominent mitochondrial dysfunction, ROS production and mitochondrial DNA (mtDNA) release, accompanied by hepatic inflammation and fibrosis. In summary, our study demonstrates the importance of Top1MT in sustaining hepatocyte functions and suppressing MASH.\",\"PeriodicalId\":501108,\"journal\":{\"name\":\"bioRxiv - Molecular Biology\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Molecular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.05.611454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.05.611454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mitochondrial topoisomerase I (Top1MT) prevents the onset of metabolic dysfunction-associated steatohepatitis (MASH) in mice
High fat (HF) diet is a major factor in the development of metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatis (MASH), and mitochondria have been proposed to play a role in the pathogenesis of HF diet-induced MASH. Because Mitochondrial topoisomerase I (Top1MT) is exclusively present in mitochondria and Top1MT knock-out mice are viable, we were able to assess the role of Top1MT in the development of MASH. We show that after 16 weeks of HF diet, mice lacking Top1MT are prone to the development of severe MASH characterized by liver steatosis, lobular inflammation and hepatocyte damage. Mice lacking Top1MT also show prominent mitochondrial dysfunction, ROS production and mitochondrial DNA (mtDNA) release, accompanied by hepatic inflammation and fibrosis. In summary, our study demonstrates the importance of Top1MT in sustaining hepatocyte functions and suppressing MASH.