S. A. Saleh;E. C. McSporran;J. L. Cardenas Barrera;E. Castillo-Guerra;C. P. Diduch
{"title":"为住宅负载实施智能电网功能的单节点方法","authors":"S. A. Saleh;E. C. McSporran;J. L. Cardenas Barrera;E. Castillo-Guerra;C. P. Diduch","doi":"10.1109/TIA.2024.3446958","DOIUrl":null,"url":null,"abstract":"This paper presents and tests a one-node method for implementing smart grid functions to operate residential loads. The proposed method is developed based on adjusting the power demands of residential loads to achieve a desired load-demand profile at the supply node. A desired load-demand profile is set based on operating thermostatically controlled appliances (TCAs) in the target residential loads. Smart grid functions are implemented to operate TCAs so that thermal energy is stored during the daily off-peak-demand hours. This stored thermal energy is discharged during daily peak-demand hours in order to reduce power demands of residential loads during these hours. The command power assigned to each TCA controller (set to implement smart grid functions) is initiated using a modified-profile for residential load hosting these TCAs. The one-node method is implemented and tested for a university campus that has 45 buildings. Each building has central central heating units and water heaters, and some buildings have central air conditioner units. Tests are performed for different seasons, where power demands of campus buildings are controlled by peak-demand management (as a smart grid function). Test results show the accuracy and simplicity of the one-node method to assign command values for each building to ensure reduced power losses and improved voltage.","PeriodicalId":13337,"journal":{"name":"IEEE Transactions on Industry Applications","volume":"60 6","pages":"8295-8305"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The One-Node Approach to Implement Smart Grid Functions for Residential Loads\",\"authors\":\"S. A. Saleh;E. C. McSporran;J. L. Cardenas Barrera;E. Castillo-Guerra;C. P. Diduch\",\"doi\":\"10.1109/TIA.2024.3446958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents and tests a one-node method for implementing smart grid functions to operate residential loads. The proposed method is developed based on adjusting the power demands of residential loads to achieve a desired load-demand profile at the supply node. A desired load-demand profile is set based on operating thermostatically controlled appliances (TCAs) in the target residential loads. Smart grid functions are implemented to operate TCAs so that thermal energy is stored during the daily off-peak-demand hours. This stored thermal energy is discharged during daily peak-demand hours in order to reduce power demands of residential loads during these hours. The command power assigned to each TCA controller (set to implement smart grid functions) is initiated using a modified-profile for residential load hosting these TCAs. The one-node method is implemented and tested for a university campus that has 45 buildings. Each building has central central heating units and water heaters, and some buildings have central air conditioner units. Tests are performed for different seasons, where power demands of campus buildings are controlled by peak-demand management (as a smart grid function). Test results show the accuracy and simplicity of the one-node method to assign command values for each building to ensure reduced power losses and improved voltage.\",\"PeriodicalId\":13337,\"journal\":{\"name\":\"IEEE Transactions on Industry Applications\",\"volume\":\"60 6\",\"pages\":\"8295-8305\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Industry Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10643299/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industry Applications","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10643299/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
The One-Node Approach to Implement Smart Grid Functions for Residential Loads
This paper presents and tests a one-node method for implementing smart grid functions to operate residential loads. The proposed method is developed based on adjusting the power demands of residential loads to achieve a desired load-demand profile at the supply node. A desired load-demand profile is set based on operating thermostatically controlled appliances (TCAs) in the target residential loads. Smart grid functions are implemented to operate TCAs so that thermal energy is stored during the daily off-peak-demand hours. This stored thermal energy is discharged during daily peak-demand hours in order to reduce power demands of residential loads during these hours. The command power assigned to each TCA controller (set to implement smart grid functions) is initiated using a modified-profile for residential load hosting these TCAs. The one-node method is implemented and tested for a university campus that has 45 buildings. Each building has central central heating units and water heaters, and some buildings have central air conditioner units. Tests are performed for different seasons, where power demands of campus buildings are controlled by peak-demand management (as a smart grid function). Test results show the accuracy and simplicity of the one-node method to assign command values for each building to ensure reduced power losses and improved voltage.
期刊介绍:
The scope of the IEEE Transactions on Industry Applications includes all scope items of the IEEE Industry Applications Society, that is, the advancement of the theory and practice of electrical and electronic engineering in the development, design, manufacture, and application of electrical systems, apparatus, devices, and controls to the processes and equipment of industry and commerce; the promotion of safe, reliable, and economic installations; industry leadership in energy conservation and environmental, health, and safety issues; the creation of voluntary engineering standards and recommended practices; and the professional development of its membership.