利用机器学习和移动应用技术进行白癜风管理:概念验证

Mahla Abdolahnejad, Hyerin Jeong, Victoria Lin, Tiffany Ng, Emad Altaki, Anthea Mo, Burak Yildiz, Hannah O. Chan, Collin Hong, Rakesh Joshi
{"title":"利用机器学习和移动应用技术进行白癜风管理:概念验证","authors":"Mahla Abdolahnejad, Hyerin Jeong, Victoria Lin, Tiffany Ng, Emad Altaki, Anthea Mo, Burak Yildiz, Hannah O. Chan, Collin Hong, Rakesh Joshi","doi":"10.1101/2024.09.06.24313068","DOIUrl":null,"url":null,"abstract":"Vitiligo, a dermatological condition characterized by depigmented patches on the skin, affects up to 2% of the global population. Its management is complex, often hindered by delayed diagnosis due to limited access to dermatologists and/ digital tools. Recent advancements in machine learning (ML) offer a potential solution by providing digital tools for early detection and management. This proof-of-concept study describes the development of a machine learning pipeline integrated into a mobile application for vitiligo assessment.","PeriodicalId":501385,"journal":{"name":"medRxiv - Dermatology","volume":"179 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging Machine Learning & Mobile Application Technology for Vitiligo Management: A Proof-of-Concept\",\"authors\":\"Mahla Abdolahnejad, Hyerin Jeong, Victoria Lin, Tiffany Ng, Emad Altaki, Anthea Mo, Burak Yildiz, Hannah O. Chan, Collin Hong, Rakesh Joshi\",\"doi\":\"10.1101/2024.09.06.24313068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vitiligo, a dermatological condition characterized by depigmented patches on the skin, affects up to 2% of the global population. Its management is complex, often hindered by delayed diagnosis due to limited access to dermatologists and/ digital tools. Recent advancements in machine learning (ML) offer a potential solution by providing digital tools for early detection and management. This proof-of-concept study describes the development of a machine learning pipeline integrated into a mobile application for vitiligo assessment.\",\"PeriodicalId\":501385,\"journal\":{\"name\":\"medRxiv - Dermatology\",\"volume\":\"179 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Dermatology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.06.24313068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Dermatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.06.24313068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

白癜风是一种皮肤病,其特征是皮肤上出现色素脱失斑,发病率高达全球人口的 2%。这种疾病的治疗非常复杂,由于皮肤科医生和/或数字工具的有限性,往往会导致诊断延迟。机器学习(ML)的最新进展为早期检测和管理提供了数字工具,从而提供了一种潜在的解决方案。本概念验证研究介绍了将机器学习管道集成到移动应用程序中进行白癜风评估的开发过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leveraging Machine Learning & Mobile Application Technology for Vitiligo Management: A Proof-of-Concept
Vitiligo, a dermatological condition characterized by depigmented patches on the skin, affects up to 2% of the global population. Its management is complex, often hindered by delayed diagnosis due to limited access to dermatologists and/ digital tools. Recent advancements in machine learning (ML) offer a potential solution by providing digital tools for early detection and management. This proof-of-concept study describes the development of a machine learning pipeline integrated into a mobile application for vitiligo assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Two-step Bayesian Mendelian Randomization Study on Cholecystitis and Dermatitis Risk of Major Adverse Cardiovascular Events following Nicotinamide Exposure: Cohort Study Methodological issues in visible LED therapy dermatological research and reporting Leveraging Machine Learning & Mobile Application Technology for Vitiligo Management: A Proof-of-Concept Nationwide melanoma registry databases in real-world settings: a scoping review protocol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1