通过无重置分层强化学习实现微机器人趋化

Tongzhao Xiong, Zhaorong Liu, Chong Jin Ong, Lailai Zhu
{"title":"通过无重置分层强化学习实现微机器人趋化","authors":"Tongzhao Xiong, Zhaorong Liu, Chong Jin Ong, Lailai Zhu","doi":"arxiv-2408.07346","DOIUrl":null,"url":null,"abstract":"Microorganisms have evolved diverse strategies to propel in viscous fluids,\nnavigate complex environments, and exhibit taxis in response to stimuli. This\nhas inspired the development of synthetic microrobots, where machine learning\n(ML) is playing an increasingly important role. Can ML endow these robots with\nintelligence resembling that developed by their natural counterparts over\nevolutionary timelines? Here, we demonstrate chemotactic navigation of a\nmulti-link articulated microrobot using two-level hierarchical reinforcement\nlearning (RL). The lower-level RL allows the robot -- featuring either a chain\nor ring topology -- to acquire topology-specific swimming gaits: wave\npropagation characteristic of flagella or body oscillation akin to an ameboid.\nSuch flagellar and ameboid microswimmers, further enabled by the higher-level\nRL, accomplish chemotactic navigation in prototypical biologically-relevant\nscenarios that feature conflicting chemoattractants, pursuing a swimming\nbacterial mimic, steering in vortical flows, and squeezing through tight\nconstrictions. Additionally, we achieve reset-free, partially observable RL,\nwhere the robot observes only its joint angles and local scalar quantities.\nThis advancement illuminates solutions for overcoming the persistent challenges\nof manual resets and partial observability in real-world microrobotic RL.","PeriodicalId":501040,"journal":{"name":"arXiv - PHYS - Biological Physics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enabling microrobotic chemotaxis via reset-free hierarchical reinforcement learning\",\"authors\":\"Tongzhao Xiong, Zhaorong Liu, Chong Jin Ong, Lailai Zhu\",\"doi\":\"arxiv-2408.07346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microorganisms have evolved diverse strategies to propel in viscous fluids,\\nnavigate complex environments, and exhibit taxis in response to stimuli. This\\nhas inspired the development of synthetic microrobots, where machine learning\\n(ML) is playing an increasingly important role. Can ML endow these robots with\\nintelligence resembling that developed by their natural counterparts over\\nevolutionary timelines? Here, we demonstrate chemotactic navigation of a\\nmulti-link articulated microrobot using two-level hierarchical reinforcement\\nlearning (RL). The lower-level RL allows the robot -- featuring either a chain\\nor ring topology -- to acquire topology-specific swimming gaits: wave\\npropagation characteristic of flagella or body oscillation akin to an ameboid.\\nSuch flagellar and ameboid microswimmers, further enabled by the higher-level\\nRL, accomplish chemotactic navigation in prototypical biologically-relevant\\nscenarios that feature conflicting chemoattractants, pursuing a swimming\\nbacterial mimic, steering in vortical flows, and squeezing through tight\\nconstrictions. Additionally, we achieve reset-free, partially observable RL,\\nwhere the robot observes only its joint angles and local scalar quantities.\\nThis advancement illuminates solutions for overcoming the persistent challenges\\nof manual resets and partial observability in real-world microrobotic RL.\",\"PeriodicalId\":501040,\"journal\":{\"name\":\"arXiv - PHYS - Biological Physics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Biological Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.07346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Biological Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微生物已经进化出了多种策略,可以在粘性流体中推进、在复杂环境中航行,并在受到刺激时表现出滑行。这启发了合成微型机器人的发展,而机器学习(ML)在其中扮演着越来越重要的角色。机器学习能否赋予这些机器人与自然界中的机器人一样的智能?在这里,我们利用两级分层强化学习(RL)演示了多链节铰接式微型机器人的趋化导航。较低级别的强化学习允许机器人(具有链状或环状拓扑结构)获得拓扑结构特有的游泳步态:鞭毛特有的波状传播或类似于meboid的身体摆动。这种鞭毛和meboid微型游泳机器人在较高级别的强化学习的进一步支持下,在原型生物相关情景中完成趋化导航,这些情景包括冲突的趋化吸引物、追逐游泳的细菌模仿体、在涡流中转向以及挤过狭小的限制。此外,我们还实现了无重置、部分可观测的 RL,在这种情况下,机器人只需观测其关节角度和局部标量。这一进展为克服现实世界中微型机器人 RL 所面临的手动重置和部分可观测性的长期挑战提供了解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enabling microrobotic chemotaxis via reset-free hierarchical reinforcement learning
Microorganisms have evolved diverse strategies to propel in viscous fluids, navigate complex environments, and exhibit taxis in response to stimuli. This has inspired the development of synthetic microrobots, where machine learning (ML) is playing an increasingly important role. Can ML endow these robots with intelligence resembling that developed by their natural counterparts over evolutionary timelines? Here, we demonstrate chemotactic navigation of a multi-link articulated microrobot using two-level hierarchical reinforcement learning (RL). The lower-level RL allows the robot -- featuring either a chain or ring topology -- to acquire topology-specific swimming gaits: wave propagation characteristic of flagella or body oscillation akin to an ameboid. Such flagellar and ameboid microswimmers, further enabled by the higher-level RL, accomplish chemotactic navigation in prototypical biologically-relevant scenarios that feature conflicting chemoattractants, pursuing a swimming bacterial mimic, steering in vortical flows, and squeezing through tight constrictions. Additionally, we achieve reset-free, partially observable RL, where the robot observes only its joint angles and local scalar quantities. This advancement illuminates solutions for overcoming the persistent challenges of manual resets and partial observability in real-world microrobotic RL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Error Thresholds in Presence of Epistatic Interactions Choice of Reference Surfaces to assess Plant Health through leaf scale temperature monitoring Physical Insights into Electromagnetic Efficiency of Wireless Implantable Bioelectronics Pseudo-RNA with parallel aligned single-strands and periodic base sequence as a new universality class Hydrodynamic hovering of swimming bacteria above surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1