生物分子系统最佳反应坐标的流动匹配

Mingyuan Zhang, Zhicheng Zhang, Yong Wang, Hao Wu
{"title":"生物分子系统最佳反应坐标的流动匹配","authors":"Mingyuan Zhang, Zhicheng Zhang, Yong Wang, Hao Wu","doi":"arxiv-2408.17139","DOIUrl":null,"url":null,"abstract":"We present Flow Matching for Reaction Coordinates (FMRC), a novel deep\nlearning algorithm designed to identify optimal reaction coordinates (RC) in\nbiomolecular reversible dynamics. FMRC is based on the mathematical principles\nof lumpability and decomposability, which we reformulate into a conditional\nprobability framework for efficient data-driven optimization using deep\ngenerative models. While FMRC does not explicitly learn the well-established\ntransfer operator or its eigenfunctions, it can effectively encode the dynamics\nof leading eigenfunctions of the system transfer operator into its\nlow-dimensional RC space. We further quantitatively compare its performance\nwith several state-of-the-art algorithms by evaluating the quality of Markov\nState Models (MSM) constructed in their respective RC spaces, demonstrating the\nsuperiority of FMRC in three increasingly complex biomolecular systems.\nFinally, we discuss its potential applications in downstream applications such\nas enhanced sampling methods and MSM construction.","PeriodicalId":501040,"journal":{"name":"arXiv - PHYS - Biological Physics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow Matching for Optimal Reaction Coordinates of Biomolecular System\",\"authors\":\"Mingyuan Zhang, Zhicheng Zhang, Yong Wang, Hao Wu\",\"doi\":\"arxiv-2408.17139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Flow Matching for Reaction Coordinates (FMRC), a novel deep\\nlearning algorithm designed to identify optimal reaction coordinates (RC) in\\nbiomolecular reversible dynamics. FMRC is based on the mathematical principles\\nof lumpability and decomposability, which we reformulate into a conditional\\nprobability framework for efficient data-driven optimization using deep\\ngenerative models. While FMRC does not explicitly learn the well-established\\ntransfer operator or its eigenfunctions, it can effectively encode the dynamics\\nof leading eigenfunctions of the system transfer operator into its\\nlow-dimensional RC space. We further quantitatively compare its performance\\nwith several state-of-the-art algorithms by evaluating the quality of Markov\\nState Models (MSM) constructed in their respective RC spaces, demonstrating the\\nsuperiority of FMRC in three increasingly complex biomolecular systems.\\nFinally, we discuss its potential applications in downstream applications such\\nas enhanced sampling methods and MSM construction.\",\"PeriodicalId\":501040,\"journal\":{\"name\":\"arXiv - PHYS - Biological Physics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Biological Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.17139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Biological Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了反应坐标流匹配(FMRC),这是一种新颖的深度学习算法,旨在识别生物分子可逆动力学中的最佳反应坐标(RC)。FMRC 基于可凑合性和可分解性的数学原理,我们将其重新表述为条件概率框架,以便使用深度生成模型进行高效的数据驱动优化。虽然 FMRC 并不明确学习成熟的转移算子或其特征函数,但它能有效地将系统转移算子的领先特征函数的动态编码到其低维 RC 空间中。通过评估在各自 RC 空间中构建的马尔可夫状态模型(MSM)的质量,我们进一步定量比较了 FMRC 与几种最先进算法的性能,证明了 FMRC 在三个日益复杂的生物分子系统中的优越性。最后,我们讨论了 FMRC 在增强采样方法和 MSM 构建等下游应用中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flow Matching for Optimal Reaction Coordinates of Biomolecular System
We present Flow Matching for Reaction Coordinates (FMRC), a novel deep learning algorithm designed to identify optimal reaction coordinates (RC) in biomolecular reversible dynamics. FMRC is based on the mathematical principles of lumpability and decomposability, which we reformulate into a conditional probability framework for efficient data-driven optimization using deep generative models. While FMRC does not explicitly learn the well-established transfer operator or its eigenfunctions, it can effectively encode the dynamics of leading eigenfunctions of the system transfer operator into its low-dimensional RC space. We further quantitatively compare its performance with several state-of-the-art algorithms by evaluating the quality of Markov State Models (MSM) constructed in their respective RC spaces, demonstrating the superiority of FMRC in three increasingly complex biomolecular systems. Finally, we discuss its potential applications in downstream applications such as enhanced sampling methods and MSM construction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Error Thresholds in Presence of Epistatic Interactions Choice of Reference Surfaces to assess Plant Health through leaf scale temperature monitoring Physical Insights into Electromagnetic Efficiency of Wireless Implantable Bioelectronics Pseudo-RNA with parallel aligned single-strands and periodic base sequence as a new universality class Hydrodynamic hovering of swimming bacteria above surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1