了解土壤磷循环,促进可持续发展:综述

IF 15.1 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES One Earth Pub Date : 2024-08-27 DOI:10.1016/j.oneear.2024.07.020
Julian Helfenstein, Bruno Ringeval, Federica Tamburini, Vera L. Mulder, Daniel S. Goll, Xianjin He, Edwin Alblas, Yingping Wang, Alain Mollier, Emmanuel Frossard
{"title":"了解土壤磷循环,促进可持续发展:综述","authors":"Julian Helfenstein, Bruno Ringeval, Federica Tamburini, Vera L. Mulder, Daniel S. Goll, Xianjin He, Edwin Alblas, Yingping Wang, Alain Mollier, Emmanuel Frossard","doi":"10.1016/j.oneear.2024.07.020","DOIUrl":null,"url":null,"abstract":"<p>Soil phosphorus (P) directly impacts major sustainability outcomes, namely crop yields, water quality, and carbon sequestration. Optimally managing P to improve sustainability outcomes requires a mechanistic understanding of P availability and transfer, alongside high-resolution spatial data. However, it is unclear if current measurement techniques, models, and maps meet the demands for science-informed management. Here, we review recent advances in measuring P fluxes, quantifying P availability, and mapping soil P resources and discuss implications for sustainability outcomes. We find that the understanding of soil P availability has significantly improved but that agronomical applications and climate models are still largely based on outdated concepts. Also, we find that spatial data on soil P resources are highly uncertain, limiting the usefulness of current P maps. We highlight steps to improve existing tools and emphasize that these improvements need to go hand in hand with policy and technological development to successfully address P-related sustainable development goals.</p>","PeriodicalId":52366,"journal":{"name":"One Earth","volume":"95 1","pages":""},"PeriodicalIF":15.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding soil phosphorus cycling for sustainable development: A review\",\"authors\":\"Julian Helfenstein, Bruno Ringeval, Federica Tamburini, Vera L. Mulder, Daniel S. Goll, Xianjin He, Edwin Alblas, Yingping Wang, Alain Mollier, Emmanuel Frossard\",\"doi\":\"10.1016/j.oneear.2024.07.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Soil phosphorus (P) directly impacts major sustainability outcomes, namely crop yields, water quality, and carbon sequestration. Optimally managing P to improve sustainability outcomes requires a mechanistic understanding of P availability and transfer, alongside high-resolution spatial data. However, it is unclear if current measurement techniques, models, and maps meet the demands for science-informed management. Here, we review recent advances in measuring P fluxes, quantifying P availability, and mapping soil P resources and discuss implications for sustainability outcomes. We find that the understanding of soil P availability has significantly improved but that agronomical applications and climate models are still largely based on outdated concepts. Also, we find that spatial data on soil P resources are highly uncertain, limiting the usefulness of current P maps. We highlight steps to improve existing tools and emphasize that these improvements need to go hand in hand with policy and technological development to successfully address P-related sustainable development goals.</p>\",\"PeriodicalId\":52366,\"journal\":{\"name\":\"One Earth\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":15.1000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"One Earth\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.oneear.2024.07.020\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"One Earth","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.oneear.2024.07.020","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

土壤中的磷(P)会直接影响主要的可持续发展成果,即作物产量、水质和碳吸收。要优化磷的管理以改善可持续发展成果,需要从机理上了解磷的可用性和转移,同时需要高分辨率的空间数据。然而,目前还不清楚当前的测量技术、模型和地图是否能满足科学管理的要求。在此,我们回顾了在测量钾通量、量化钾可用性和绘制土壤钾资源图方面的最新进展,并讨论了对可持续发展成果的影响。我们发现,人们对土壤钾可用性的认识有了显著提高,但农艺应用和气候模型在很大程度上仍基于过时的概念。此外,我们还发现土壤钾资源的空间数据非常不确定,限制了当前钾地图的实用性。我们强调了改进现有工具的步骤,并强调这些改进需要与政策和技术发展齐头并进,以成功实现与钾相关的可持续发展目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding soil phosphorus cycling for sustainable development: A review

Soil phosphorus (P) directly impacts major sustainability outcomes, namely crop yields, water quality, and carbon sequestration. Optimally managing P to improve sustainability outcomes requires a mechanistic understanding of P availability and transfer, alongside high-resolution spatial data. However, it is unclear if current measurement techniques, models, and maps meet the demands for science-informed management. Here, we review recent advances in measuring P fluxes, quantifying P availability, and mapping soil P resources and discuss implications for sustainability outcomes. We find that the understanding of soil P availability has significantly improved but that agronomical applications and climate models are still largely based on outdated concepts. Also, we find that spatial data on soil P resources are highly uncertain, limiting the usefulness of current P maps. We highlight steps to improve existing tools and emphasize that these improvements need to go hand in hand with policy and technological development to successfully address P-related sustainable development goals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
One Earth
One Earth Environmental Science-Environmental Science (all)
CiteScore
18.90
自引率
1.90%
发文量
159
期刊介绍: One Earth, Cell Press' flagship sustainability journal, serves as a platform for high-quality research and perspectives that contribute to a deeper understanding and resolution of contemporary sustainability challenges. With monthly thematic issues, the journal aims to bridge gaps between natural, social, and applied sciences, along with the humanities. One Earth fosters the cross-pollination of ideas, inspiring transformative research to address the complexities of sustainability.
期刊最新文献
Reconciling conservation and development requires enhanced integration and broader aims: A cross-continental assessment of landscape approaches Hope and hype for negative emissions Navigating the obstacles of carbon-negative technologies Scaling biochar solutions for urban carbon dioxide removal Getting real about capturing carbon from the air
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1