Michael Ehret, Jakub Cikhardt, Philip Wykeham Bradford, Iuliana-Mariana Vladisavlevici, Tomas Burian, Diego de Luis, Jose Luis Henares, Rubén Hernández Martín, Jon Imanol Apiñaniz, Roberto Lera, José Antonio Pérez-Hernández, João Jorge Santos, Giancarlo Gatti
{"title":"由相对论激光脉冲驱动的纳秒级 kA 电流脉冲高重复率源","authors":"Michael Ehret, Jakub Cikhardt, Philip Wykeham Bradford, Iuliana-Mariana Vladisavlevici, Tomas Burian, Diego de Luis, Jose Luis Henares, Rubén Hernández Martín, Jon Imanol Apiñaniz, Roberto Lera, José Antonio Pérez-Hernández, João Jorge Santos, Giancarlo Gatti","doi":"10.1017/hpl.2024.14","DOIUrl":null,"url":null,"abstract":"<p>We report the first high-repetition-rate generation and simultaneous characterization of nanosecond-scale return currents of kA-magnitude issued by the polarization of a target irradiated with a PW-class high-repetition-rate titanium:sapphire laser system at relativistic intensities. We present experimental results obtained with the VEGA-3 laser at intensities from <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240819071321735-0753:S2095471924000148:S2095471924000148_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$5\\times {10}^{18}$</span></span></img></span></span> to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240819071321735-0753:S2095471924000148:S2095471924000148_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$1.3\\times {10}^{20}$</span></span></img></span></span> W cm<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240819071321735-0753:S2095471924000148:S2095471924000148_inline3.png\"><span data-mathjax-type=\"texmath\"><span>${}^{-2}$</span></span></img></span></span>. A non-invasive inductive return-current monitor is adopted to measure the derivative of return currents of the order of kA ns<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240819071321735-0753:S2095471924000148:S2095471924000148_inline4.png\"><span data-mathjax-type=\"texmath\"><span>${}^{-1}$</span></span></img></span></span> and analysis methodology is developed to derive return currents. We compare the current for copper, aluminium and Kapton targets at different laser energies. The data show the stable production of current peaks and clear prospects for the tailoring of the pulse shape, which is promising for future applications in high-energy-density science, for example, electromagnetic interference stress tests, high-voltage pulse response measurements and charged particle beam lensing. We compare the target discharge of the order of hundreds of nC with theoretical predictions and a good agreement is found.</p>","PeriodicalId":54285,"journal":{"name":"High Power Laser Science and Engineering","volume":"10 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-repetition-rate source of nanosecond duration kA-current pulses driven by relativistic laser pulses\",\"authors\":\"Michael Ehret, Jakub Cikhardt, Philip Wykeham Bradford, Iuliana-Mariana Vladisavlevici, Tomas Burian, Diego de Luis, Jose Luis Henares, Rubén Hernández Martín, Jon Imanol Apiñaniz, Roberto Lera, José Antonio Pérez-Hernández, João Jorge Santos, Giancarlo Gatti\",\"doi\":\"10.1017/hpl.2024.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We report the first high-repetition-rate generation and simultaneous characterization of nanosecond-scale return currents of kA-magnitude issued by the polarization of a target irradiated with a PW-class high-repetition-rate titanium:sapphire laser system at relativistic intensities. We present experimental results obtained with the VEGA-3 laser at intensities from <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240819071321735-0753:S2095471924000148:S2095471924000148_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$5\\\\times {10}^{18}$</span></span></img></span></span> to <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240819071321735-0753:S2095471924000148:S2095471924000148_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$1.3\\\\times {10}^{20}$</span></span></img></span></span> W cm<span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240819071321735-0753:S2095471924000148:S2095471924000148_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${}^{-2}$</span></span></img></span></span>. A non-invasive inductive return-current monitor is adopted to measure the derivative of return currents of the order of kA ns<span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240819071321735-0753:S2095471924000148:S2095471924000148_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${}^{-1}$</span></span></img></span></span> and analysis methodology is developed to derive return currents. We compare the current for copper, aluminium and Kapton targets at different laser energies. The data show the stable production of current peaks and clear prospects for the tailoring of the pulse shape, which is promising for future applications in high-energy-density science, for example, electromagnetic interference stress tests, high-voltage pulse response measurements and charged particle beam lensing. We compare the target discharge of the order of hundreds of nC with theoretical predictions and a good agreement is found.</p>\",\"PeriodicalId\":54285,\"journal\":{\"name\":\"High Power Laser Science and Engineering\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Power Laser Science and Engineering\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/hpl.2024.14\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Power Laser Science and Engineering","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/hpl.2024.14","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
High-repetition-rate source of nanosecond duration kA-current pulses driven by relativistic laser pulses
We report the first high-repetition-rate generation and simultaneous characterization of nanosecond-scale return currents of kA-magnitude issued by the polarization of a target irradiated with a PW-class high-repetition-rate titanium:sapphire laser system at relativistic intensities. We present experimental results obtained with the VEGA-3 laser at intensities from $5\times {10}^{18}$ to $1.3\times {10}^{20}$ W cm${}^{-2}$. A non-invasive inductive return-current monitor is adopted to measure the derivative of return currents of the order of kA ns${}^{-1}$ and analysis methodology is developed to derive return currents. We compare the current for copper, aluminium and Kapton targets at different laser energies. The data show the stable production of current peaks and clear prospects for the tailoring of the pulse shape, which is promising for future applications in high-energy-density science, for example, electromagnetic interference stress tests, high-voltage pulse response measurements and charged particle beam lensing. We compare the target discharge of the order of hundreds of nC with theoretical predictions and a good agreement is found.
期刊介绍:
High Power Laser Science and Engineering (HPLaser) is an international, peer-reviewed open access journal which focuses on all aspects of high power laser science and engineering.
HPLaser publishes research that seeks to uncover the underlying science and engineering in the fields of high energy density physics, high power lasers, advanced laser technology and applications and laser components. Topics covered include laser-plasma interaction, ultra-intense ultra-short pulse laser interaction with matter, attosecond physics, laser design, modelling and optimization, laser amplifiers, nonlinear optics, laser engineering, optical materials, optical devices, fiber lasers, diode-pumped solid state lasers and excimer lasers.