{"title":"探索将卟啉、酞菁和络合物用作有机物转化的光催化剂","authors":"Ashmita Jain, Iti Gupta","doi":"10.1055/s-0040-1720126","DOIUrl":null,"url":null,"abstract":"<p>In recent years, macrocycles have emerged as efficient and sustainable photosensitizers for the catalysis of organic transformations. This graphical review provides a concise overview of photocatalysis and photoredox catalysis utilizing three common macrocycles: porphyrins, phthalocyanines and corroles. They exhibit strong absorption in the visible region and can be easily oxidized or reduced, making them good candidates for photocatalysis.</p> ","PeriodicalId":22135,"journal":{"name":"SynOpen","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Porphyrins, Phthalocyanines and Corroles as Photocatalysts for Organic Transformations\",\"authors\":\"Ashmita Jain, Iti Gupta\",\"doi\":\"10.1055/s-0040-1720126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, macrocycles have emerged as efficient and sustainable photosensitizers for the catalysis of organic transformations. This graphical review provides a concise overview of photocatalysis and photoredox catalysis utilizing three common macrocycles: porphyrins, phthalocyanines and corroles. They exhibit strong absorption in the visible region and can be easily oxidized or reduced, making them good candidates for photocatalysis.</p> \",\"PeriodicalId\":22135,\"journal\":{\"name\":\"SynOpen\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SynOpen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/s-0040-1720126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SynOpen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0040-1720126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Exploring Porphyrins, Phthalocyanines and Corroles as Photocatalysts for Organic Transformations
In recent years, macrocycles have emerged as efficient and sustainable photosensitizers for the catalysis of organic transformations. This graphical review provides a concise overview of photocatalysis and photoredox catalysis utilizing three common macrocycles: porphyrins, phthalocyanines and corroles. They exhibit strong absorption in the visible region and can be easily oxidized or reduced, making them good candidates for photocatalysis.