将大型语言模型作为治疗工具:比较提示技术以改进 GPT 提供的问题解决疗法

Daniil Filienko, Yinzhou Wang, Caroline El Jazmi, Serena Xie, Trevor Cohen, Martine De Cock, Weichao Yuwen
{"title":"将大型语言模型作为治疗工具:比较提示技术以改进 GPT 提供的问题解决疗法","authors":"Daniil Filienko, Yinzhou Wang, Caroline El Jazmi, Serena Xie, Trevor Cohen, Martine De Cock, Weichao Yuwen","doi":"arxiv-2409.00112","DOIUrl":null,"url":null,"abstract":"While Large Language Models (LLMs) are being quickly adapted to many domains,\nincluding healthcare, their strengths and pitfalls remain under-explored. In\nour study, we examine the effects of prompt engineering to guide Large Language\nModels (LLMs) in delivering parts of a Problem-Solving Therapy (PST) session\nvia text, particularly during the symptom identification and assessment phase\nfor personalized goal setting. We present evaluation results of the models'\nperformances by automatic metrics and experienced medical professionals. We\ndemonstrate that the models' capability to deliver protocolized therapy can be\nimproved with the proper use of prompt engineering methods, albeit with\nlimitations. To our knowledge, this study is among the first to assess the\neffects of various prompting techniques in enhancing a generalist model's\nability to deliver psychotherapy, focusing on overall quality, consistency, and\nempathy. Exploring LLMs' potential in delivering psychotherapy holds promise\nwith the current shortage of mental health professionals amid significant\nneeds, enhancing the potential utility of AI-based and AI-enhanced care\nservices.","PeriodicalId":501168,"journal":{"name":"arXiv - CS - Emerging Technologies","volume":"410 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Large Language Models as a Therapeutic Tool: Comparing Prompting Techniques to Improve GPT-Delivered Problem-Solving Therapy\",\"authors\":\"Daniil Filienko, Yinzhou Wang, Caroline El Jazmi, Serena Xie, Trevor Cohen, Martine De Cock, Weichao Yuwen\",\"doi\":\"arxiv-2409.00112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While Large Language Models (LLMs) are being quickly adapted to many domains,\\nincluding healthcare, their strengths and pitfalls remain under-explored. In\\nour study, we examine the effects of prompt engineering to guide Large Language\\nModels (LLMs) in delivering parts of a Problem-Solving Therapy (PST) session\\nvia text, particularly during the symptom identification and assessment phase\\nfor personalized goal setting. We present evaluation results of the models'\\nperformances by automatic metrics and experienced medical professionals. We\\ndemonstrate that the models' capability to deliver protocolized therapy can be\\nimproved with the proper use of prompt engineering methods, albeit with\\nlimitations. To our knowledge, this study is among the first to assess the\\neffects of various prompting techniques in enhancing a generalist model's\\nability to deliver psychotherapy, focusing on overall quality, consistency, and\\nempathy. Exploring LLMs' potential in delivering psychotherapy holds promise\\nwith the current shortage of mental health professionals amid significant\\nneeds, enhancing the potential utility of AI-based and AI-enhanced care\\nservices.\",\"PeriodicalId\":501168,\"journal\":{\"name\":\"arXiv - CS - Emerging Technologies\",\"volume\":\"410 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然大语言模型(LLMs)正在迅速应用于包括医疗保健在内的许多领域,但它们的优势和缺陷仍未得到充分探索。在我们的研究中,我们考察了提示工程在指导大语言模型(LLMs)通过文本提供部分问题解决疗法(PST)会话方面的效果,尤其是在症状识别和评估阶段,以实现个性化目标设定。我们介绍了自动度量和经验丰富的医学专家对模型性能的评估结果。我们证明,尽管存在局限性,但适当使用提示工程方法可以提高模型提供协议化治疗的能力。据我们所知,这项研究是首次评估各种提示技术在提高通用模型提供心理治疗能力方面的效果,重点关注整体质量、一致性和移情能力。在当前心理健康专业人员严重短缺的情况下,探索 LLM 在提供心理治疗方面的潜力大有可为,这将增强基于人工智能和人工智能增强型护理服务的潜在效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward Large Language Models as a Therapeutic Tool: Comparing Prompting Techniques to Improve GPT-Delivered Problem-Solving Therapy
While Large Language Models (LLMs) are being quickly adapted to many domains, including healthcare, their strengths and pitfalls remain under-explored. In our study, we examine the effects of prompt engineering to guide Large Language Models (LLMs) in delivering parts of a Problem-Solving Therapy (PST) session via text, particularly during the symptom identification and assessment phase for personalized goal setting. We present evaluation results of the models' performances by automatic metrics and experienced medical professionals. We demonstrate that the models' capability to deliver protocolized therapy can be improved with the proper use of prompt engineering methods, albeit with limitations. To our knowledge, this study is among the first to assess the effects of various prompting techniques in enhancing a generalist model's ability to deliver psychotherapy, focusing on overall quality, consistency, and empathy. Exploring LLMs' potential in delivering psychotherapy holds promise with the current shortage of mental health professionals amid significant needs, enhancing the potential utility of AI-based and AI-enhanced care services.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pennsieve - A Collaborative Platform for Translational Neuroscience and Beyond Analysing Attacks on Blockchain Systems in a Layer-based Approach Exploring Utility in a Real-World Warehouse Optimization Problem: Formulation Based on Quantun Annealers and Preliminary Results High Definition Map Mapping and Update: A General Overview and Future Directions Detection Made Easy: Potentials of Large Language Models for Solidity Vulnerabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1