Erica R Fuhrmeister, Sooyeol Kim, Shruteek A Mairal, Caroline McCormack, Benard Chieng, Jenna M Swarthout, Abigail Harvey Paulos, Sammy M Njenga, Amy J Pickering
{"title":"Context-Seq:CRISPR-Cas9 靶向纳米孔测序用于抗菌药耐药性的传播动态研究","authors":"Erica R Fuhrmeister, Sooyeol Kim, Shruteek A Mairal, Caroline McCormack, Benard Chieng, Jenna M Swarthout, Abigail Harvey Paulos, Sammy M Njenga, Amy J Pickering","doi":"10.1101/2024.09.12.612745","DOIUrl":null,"url":null,"abstract":"Antimicrobial resistance (AMR) aligns with a One Health framework in that resistant bacteria and antibiotic resistance genes (ARGs) can be transmitted between humans, animals, and the environment. However, there is a critical need to more precisely understand how and to what extent AMR is exchanged between animals and humans. Metagenomic sequencing has low detection for rare targets such as ARGs, while whole genome sequencing of isolates is burdensome and misses exchange between uncultured bacterial species. We developed a novel, targeted sequencing assay using CRISPR-Cas9 to selectively sequence ARGs and their genomic context with long-read sequencing. Using this method, termed Context-Seq, we investigated overlapping AMR elements containing the ARGs blaCTX-M and blaTEM between adults, children, poultry, and dogs in animal-owning households in Nairobi, Kenya. We identified 22 genetically distinct clusters (> 80%ID over ≥ 3000 bp) containing blaTEM and one cluster containing blaCTX-M that were shared within and between households. Half of the clusters were shared between humans and animals, while the other half were shared only between animals (poultry-poultry, dog-dog, and dog-poultry). We identified potentially pathogenic hosts of ARGs including Escherichia coli, Klebsiella pneumonia, and Haemophilus influenzae across sample types. Context-Seq complements conventional methods to obtain an additional view of bacterial and mammalian hosts in the proliferation of AMR.","PeriodicalId":501357,"journal":{"name":"bioRxiv - Microbiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Context-Seq: CRISPR-Cas9 Targeted Nanopore Sequencing for Transmission Dynamics of Antimicrobial Resistance\",\"authors\":\"Erica R Fuhrmeister, Sooyeol Kim, Shruteek A Mairal, Caroline McCormack, Benard Chieng, Jenna M Swarthout, Abigail Harvey Paulos, Sammy M Njenga, Amy J Pickering\",\"doi\":\"10.1101/2024.09.12.612745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Antimicrobial resistance (AMR) aligns with a One Health framework in that resistant bacteria and antibiotic resistance genes (ARGs) can be transmitted between humans, animals, and the environment. However, there is a critical need to more precisely understand how and to what extent AMR is exchanged between animals and humans. Metagenomic sequencing has low detection for rare targets such as ARGs, while whole genome sequencing of isolates is burdensome and misses exchange between uncultured bacterial species. We developed a novel, targeted sequencing assay using CRISPR-Cas9 to selectively sequence ARGs and their genomic context with long-read sequencing. Using this method, termed Context-Seq, we investigated overlapping AMR elements containing the ARGs blaCTX-M and blaTEM between adults, children, poultry, and dogs in animal-owning households in Nairobi, Kenya. We identified 22 genetically distinct clusters (> 80%ID over ≥ 3000 bp) containing blaTEM and one cluster containing blaCTX-M that were shared within and between households. Half of the clusters were shared between humans and animals, while the other half were shared only between animals (poultry-poultry, dog-dog, and dog-poultry). We identified potentially pathogenic hosts of ARGs including Escherichia coli, Klebsiella pneumonia, and Haemophilus influenzae across sample types. Context-Seq complements conventional methods to obtain an additional view of bacterial and mammalian hosts in the proliferation of AMR.\",\"PeriodicalId\":501357,\"journal\":{\"name\":\"bioRxiv - Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.12.612745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.12.612745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Context-Seq: CRISPR-Cas9 Targeted Nanopore Sequencing for Transmission Dynamics of Antimicrobial Resistance
Antimicrobial resistance (AMR) aligns with a One Health framework in that resistant bacteria and antibiotic resistance genes (ARGs) can be transmitted between humans, animals, and the environment. However, there is a critical need to more precisely understand how and to what extent AMR is exchanged between animals and humans. Metagenomic sequencing has low detection for rare targets such as ARGs, while whole genome sequencing of isolates is burdensome and misses exchange between uncultured bacterial species. We developed a novel, targeted sequencing assay using CRISPR-Cas9 to selectively sequence ARGs and their genomic context with long-read sequencing. Using this method, termed Context-Seq, we investigated overlapping AMR elements containing the ARGs blaCTX-M and blaTEM between adults, children, poultry, and dogs in animal-owning households in Nairobi, Kenya. We identified 22 genetically distinct clusters (> 80%ID over ≥ 3000 bp) containing blaTEM and one cluster containing blaCTX-M that were shared within and between households. Half of the clusters were shared between humans and animals, while the other half were shared only between animals (poultry-poultry, dog-dog, and dog-poultry). We identified potentially pathogenic hosts of ARGs including Escherichia coli, Klebsiella pneumonia, and Haemophilus influenzae across sample types. Context-Seq complements conventional methods to obtain an additional view of bacterial and mammalian hosts in the proliferation of AMR.