Context-Seq:CRISPR-Cas9 靶向纳米孔测序用于抗菌药耐药性的传播动态研究

Erica R Fuhrmeister, Sooyeol Kim, Shruteek A Mairal, Caroline McCormack, Benard Chieng, Jenna M Swarthout, Abigail Harvey Paulos, Sammy M Njenga, Amy J Pickering
{"title":"Context-Seq:CRISPR-Cas9 靶向纳米孔测序用于抗菌药耐药性的传播动态研究","authors":"Erica R Fuhrmeister, Sooyeol Kim, Shruteek A Mairal, Caroline McCormack, Benard Chieng, Jenna M Swarthout, Abigail Harvey Paulos, Sammy M Njenga, Amy J Pickering","doi":"10.1101/2024.09.12.612745","DOIUrl":null,"url":null,"abstract":"Antimicrobial resistance (AMR) aligns with a One Health framework in that resistant bacteria and antibiotic resistance genes (ARGs) can be transmitted between humans, animals, and the environment. However, there is a critical need to more precisely understand how and to what extent AMR is exchanged between animals and humans. Metagenomic sequencing has low detection for rare targets such as ARGs, while whole genome sequencing of isolates is burdensome and misses exchange between uncultured bacterial species. We developed a novel, targeted sequencing assay using CRISPR-Cas9 to selectively sequence ARGs and their genomic context with long-read sequencing. Using this method, termed Context-Seq, we investigated overlapping AMR elements containing the ARGs blaCTX-M and blaTEM between adults, children, poultry, and dogs in animal-owning households in Nairobi, Kenya. We identified 22 genetically distinct clusters (> 80%ID over ≥ 3000 bp) containing blaTEM and one cluster containing blaCTX-M that were shared within and between households. Half of the clusters were shared between humans and animals, while the other half were shared only between animals (poultry-poultry, dog-dog, and dog-poultry). We identified potentially pathogenic hosts of ARGs including Escherichia coli, Klebsiella pneumonia, and Haemophilus influenzae across sample types. Context-Seq complements conventional methods to obtain an additional view of bacterial and mammalian hosts in the proliferation of AMR.","PeriodicalId":501357,"journal":{"name":"bioRxiv - Microbiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Context-Seq: CRISPR-Cas9 Targeted Nanopore Sequencing for Transmission Dynamics of Antimicrobial Resistance\",\"authors\":\"Erica R Fuhrmeister, Sooyeol Kim, Shruteek A Mairal, Caroline McCormack, Benard Chieng, Jenna M Swarthout, Abigail Harvey Paulos, Sammy M Njenga, Amy J Pickering\",\"doi\":\"10.1101/2024.09.12.612745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Antimicrobial resistance (AMR) aligns with a One Health framework in that resistant bacteria and antibiotic resistance genes (ARGs) can be transmitted between humans, animals, and the environment. However, there is a critical need to more precisely understand how and to what extent AMR is exchanged between animals and humans. Metagenomic sequencing has low detection for rare targets such as ARGs, while whole genome sequencing of isolates is burdensome and misses exchange between uncultured bacterial species. We developed a novel, targeted sequencing assay using CRISPR-Cas9 to selectively sequence ARGs and their genomic context with long-read sequencing. Using this method, termed Context-Seq, we investigated overlapping AMR elements containing the ARGs blaCTX-M and blaTEM between adults, children, poultry, and dogs in animal-owning households in Nairobi, Kenya. We identified 22 genetically distinct clusters (> 80%ID over ≥ 3000 bp) containing blaTEM and one cluster containing blaCTX-M that were shared within and between households. Half of the clusters were shared between humans and animals, while the other half were shared only between animals (poultry-poultry, dog-dog, and dog-poultry). We identified potentially pathogenic hosts of ARGs including Escherichia coli, Klebsiella pneumonia, and Haemophilus influenzae across sample types. Context-Seq complements conventional methods to obtain an additional view of bacterial and mammalian hosts in the proliferation of AMR.\",\"PeriodicalId\":501357,\"journal\":{\"name\":\"bioRxiv - Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.12.612745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.12.612745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

抗菌药耐药性(AMR)与 "一个健康 "框架相一致,因为耐药细菌和抗生素耐药基因(ARGs)可以在人类、动物和环境之间传播。然而,我们亟需更准确地了解 AMR 在动物和人类之间的传播方式和程度。元基因组测序对 ARGs 等罕见目标的检出率较低,而对分离物进行全基因组测序则非常麻烦,而且会错过未培养细菌物种之间的交换。我们利用 CRISPR-Cas9 开发了一种新型的靶向测序方法,通过长读数测序选择性地对 ARGs 及其基因组上下文进行测序。利用这种被称为 Context-Seq 的方法,我们调查了肯尼亚内罗毕动物饲养家庭中成人、儿童、家禽和狗之间含有 ARG blaCTX-M 和 blaTEM 的重叠 AMR 元件。我们在家庭内部和家庭之间发现了 22 个含有 blaTEM 的不同基因簇(80%ID ≥ 3000 bp)和一个含有 blaCTX-M 的基因簇。半数簇群在人类和动物之间共享,另一半簇群仅在动物(家禽-家禽、狗-狗、狗-家禽)之间共享。我们在不同样本类型中发现了 ARGs 的潜在致病宿主,包括大肠埃希菌、肺炎克雷伯菌和流感嗜血杆菌。Context-Seq与传统方法相辅相成,为细菌和哺乳动物宿主在AMR扩散过程中的作用提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Context-Seq: CRISPR-Cas9 Targeted Nanopore Sequencing for Transmission Dynamics of Antimicrobial Resistance
Antimicrobial resistance (AMR) aligns with a One Health framework in that resistant bacteria and antibiotic resistance genes (ARGs) can be transmitted between humans, animals, and the environment. However, there is a critical need to more precisely understand how and to what extent AMR is exchanged between animals and humans. Metagenomic sequencing has low detection for rare targets such as ARGs, while whole genome sequencing of isolates is burdensome and misses exchange between uncultured bacterial species. We developed a novel, targeted sequencing assay using CRISPR-Cas9 to selectively sequence ARGs and their genomic context with long-read sequencing. Using this method, termed Context-Seq, we investigated overlapping AMR elements containing the ARGs blaCTX-M and blaTEM between adults, children, poultry, and dogs in animal-owning households in Nairobi, Kenya. We identified 22 genetically distinct clusters (> 80%ID over ≥ 3000 bp) containing blaTEM and one cluster containing blaCTX-M that were shared within and between households. Half of the clusters were shared between humans and animals, while the other half were shared only between animals (poultry-poultry, dog-dog, and dog-poultry). We identified potentially pathogenic hosts of ARGs including Escherichia coli, Klebsiella pneumonia, and Haemophilus influenzae across sample types. Context-Seq complements conventional methods to obtain an additional view of bacterial and mammalian hosts in the proliferation of AMR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A system for functional studies of the major virulence factor of malaria parasites Light-harvesting by antenna-containing rhodopsins in pelagic Asgard archaea The Human Cytomegalovirus vGPCR UL33 is Essential for Efficient Lytic Replication in Epithelial Cells A chronic murine model of pulmonary Acinetobacter baumannii infection enabling the investigation of late virulence factors, long-term antibiotic treatments, and polymicrobial infections DNA replication dynamics are associated with genome composition in Plasmodium species
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1