金刚烷胺类似物的抗病毒机制和临床前评估,这些类似物可继续抑制具有 M2 S31N 型耐药性的甲型流感病毒

Ian Tietjen, Daniel C Kwan, Annett Petrich, Roland Zell, Ivi Theodosia Antoniadou, Agni Gavriilidou, Christina Tzitzoglaki, Michail Rallis, David Fedida, Francesc X Sureda, Cato Mestdagh, Lieve MJ Naesens, Salvatore Chiantia, F Brent Johnson, Antonios Kolocouris
{"title":"金刚烷胺类似物的抗病毒机制和临床前评估,这些类似物可继续抑制具有 M2 S31N 型耐药性的甲型流感病毒","authors":"Ian Tietjen, Daniel C Kwan, Annett Petrich, Roland Zell, Ivi Theodosia Antoniadou, Agni Gavriilidou, Christina Tzitzoglaki, Michail Rallis, David Fedida, Francesc X Sureda, Cato Mestdagh, Lieve MJ Naesens, Salvatore Chiantia, F Brent Johnson, Antonios Kolocouris","doi":"10.1101/2024.09.09.612141","DOIUrl":null,"url":null,"abstract":"To better manage seasonal and pandemic influenza infections, new drugs are needed with enhanced activity against contemporary amantadine- and rimantadine-resistant influenza A virus (IAV) strains containing the S31N variant of the viral M2 ion channel (M2S31N). Here we tested 36 amantadine analogs against a panel of viruses containing either M2S31N or the parental, M2 S31 wild-type variant (M2WT). We found that several analogs, primarily those with sizeable lipophilic adducts, inhibited up to three M2S31N-containing viruses with activities at least 5-fold lower than rimantadine, without inhibiting M2S31N proton currents or modulating endosomal pH. While M2WT viruses in passaging studies rapidly gained resistance to these analogs through the established M2 mutations V27A and/or A30T, resistance development was markedly slower for M2S31N viruses and did not associate with additional M2 mutations. Instead, a subset of analogs, exemplified by 2-propyl-2-adamantanamine (38), but not 2-(1-adamantyl)piperidine (26), spiro[adamantane-2,2-pyrrolidine] (49), or spiro[adamantane-2,2-piperidine] (60), inhibited cellular entry of infectious IAV following pre-treatment and/or H1N1 pseudovirus entry. Conversely, an overlapping subset of the most lipophilic analogs including compounds 26, 49, 60, and others, disrupted viral M2-M1 protein colocalization required for intracellular viral assembly and budding. Finally, a pilot toxicity study in mice demonstrated that 38 and 49 were tolerated at doses approaching those of amantadine. Together, these results indicate that amantadine analogs act on multiple, complementary mechanisms to inhibit replication of M2S31N viruses.","PeriodicalId":501357,"journal":{"name":"bioRxiv - Microbiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antiviral Mechanisms and Preclinical Evaluation of Amantadine Analogs that Continue to Inhibit Influenza A Viruses with M2 S31N-Based Drug Resistance\",\"authors\":\"Ian Tietjen, Daniel C Kwan, Annett Petrich, Roland Zell, Ivi Theodosia Antoniadou, Agni Gavriilidou, Christina Tzitzoglaki, Michail Rallis, David Fedida, Francesc X Sureda, Cato Mestdagh, Lieve MJ Naesens, Salvatore Chiantia, F Brent Johnson, Antonios Kolocouris\",\"doi\":\"10.1101/2024.09.09.612141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To better manage seasonal and pandemic influenza infections, new drugs are needed with enhanced activity against contemporary amantadine- and rimantadine-resistant influenza A virus (IAV) strains containing the S31N variant of the viral M2 ion channel (M2S31N). Here we tested 36 amantadine analogs against a panel of viruses containing either M2S31N or the parental, M2 S31 wild-type variant (M2WT). We found that several analogs, primarily those with sizeable lipophilic adducts, inhibited up to three M2S31N-containing viruses with activities at least 5-fold lower than rimantadine, without inhibiting M2S31N proton currents or modulating endosomal pH. While M2WT viruses in passaging studies rapidly gained resistance to these analogs through the established M2 mutations V27A and/or A30T, resistance development was markedly slower for M2S31N viruses and did not associate with additional M2 mutations. Instead, a subset of analogs, exemplified by 2-propyl-2-adamantanamine (38), but not 2-(1-adamantyl)piperidine (26), spiro[adamantane-2,2-pyrrolidine] (49), or spiro[adamantane-2,2-piperidine] (60), inhibited cellular entry of infectious IAV following pre-treatment and/or H1N1 pseudovirus entry. Conversely, an overlapping subset of the most lipophilic analogs including compounds 26, 49, 60, and others, disrupted viral M2-M1 protein colocalization required for intracellular viral assembly and budding. Finally, a pilot toxicity study in mice demonstrated that 38 and 49 were tolerated at doses approaching those of amantadine. Together, these results indicate that amantadine analogs act on multiple, complementary mechanisms to inhibit replication of M2S31N viruses.\",\"PeriodicalId\":501357,\"journal\":{\"name\":\"bioRxiv - Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.09.612141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.09.612141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了更好地控制季节性流感和大流行性流感感染,我们需要能增强抗含病毒 M2 离子通道 S31N 变体(M2S31N)的当代金刚烷胺和利曼他定抗性甲型流感病毒(IAV)株活性的新药。在这里,我们测试了 36 种金刚烷胺类似物对含有 M2S31N 或亲本 M2 S31 野生型变体(M2WT)的病毒的作用。我们发现,有几种类似物,主要是那些具有较大亲脂加合物的类似物,最多可抑制三种含有 M2S31N 的病毒,其活性至少比金刚烷胺低 5 倍,而且不会抑制 M2S31N 质子电流或调节内体 pH 值。在传代研究中,M2WT 病毒通过已确定的 M2 突变 V27A 和/或 A30T 迅速获得对这些类似物的抗性,而 M2S31N 病毒的抗性发展则明显较慢,并且与其他 M2 突变无关。相反,一些类似物,例如 2-丙基-2-金刚烷胺(38),但不包括 2-(1-金刚烷基)哌啶(26)、螺[金刚烷-2,2-吡咯烷](49)或螺[金刚烷-2,2-哌啶](60),在预处理和/或 H1N1 伪病毒进入后抑制了传染性 IAV 的细胞进入。相反,包括化合物 26、49、60 和其他化合物在内的亲脂性最强的类似物的重叠子集会破坏病毒 M2-M1 蛋白的共定位,而这种共定位是细胞内病毒组装和出芽所必需的。最后,一项小鼠毒性试验研究表明,38 和 49 的耐受性接近金刚烷胺的剂量。这些结果表明,金刚烷胺类似物通过多种互补机制抑制 M2S31N 病毒的复制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Antiviral Mechanisms and Preclinical Evaluation of Amantadine Analogs that Continue to Inhibit Influenza A Viruses with M2 S31N-Based Drug Resistance
To better manage seasonal and pandemic influenza infections, new drugs are needed with enhanced activity against contemporary amantadine- and rimantadine-resistant influenza A virus (IAV) strains containing the S31N variant of the viral M2 ion channel (M2S31N). Here we tested 36 amantadine analogs against a panel of viruses containing either M2S31N or the parental, M2 S31 wild-type variant (M2WT). We found that several analogs, primarily those with sizeable lipophilic adducts, inhibited up to three M2S31N-containing viruses with activities at least 5-fold lower than rimantadine, without inhibiting M2S31N proton currents or modulating endosomal pH. While M2WT viruses in passaging studies rapidly gained resistance to these analogs through the established M2 mutations V27A and/or A30T, resistance development was markedly slower for M2S31N viruses and did not associate with additional M2 mutations. Instead, a subset of analogs, exemplified by 2-propyl-2-adamantanamine (38), but not 2-(1-adamantyl)piperidine (26), spiro[adamantane-2,2-pyrrolidine] (49), or spiro[adamantane-2,2-piperidine] (60), inhibited cellular entry of infectious IAV following pre-treatment and/or H1N1 pseudovirus entry. Conversely, an overlapping subset of the most lipophilic analogs including compounds 26, 49, 60, and others, disrupted viral M2-M1 protein colocalization required for intracellular viral assembly and budding. Finally, a pilot toxicity study in mice demonstrated that 38 and 49 were tolerated at doses approaching those of amantadine. Together, these results indicate that amantadine analogs act on multiple, complementary mechanisms to inhibit replication of M2S31N viruses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A system for functional studies of the major virulence factor of malaria parasites Light-harvesting by antenna-containing rhodopsins in pelagic Asgard archaea The Human Cytomegalovirus vGPCR UL33 is Essential for Efficient Lytic Replication in Epithelial Cells A chronic murine model of pulmonary Acinetobacter baumannii infection enabling the investigation of late virulence factors, long-term antibiotic treatments, and polymicrobial infections DNA replication dynamics are associated with genome composition in Plasmodium species
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1