Glenn James Rapsinski, Alecia Rokes, Daria Van Tyne, Vaughn S Cooper
{"title":"铜绿假单胞菌体内暴露于头孢唑肟/阿维菌素期间导致头孢妥赞/他唑巴坦和亚胺培南/西司他丁/雷贝拉坦耐药性的突变","authors":"Glenn James Rapsinski, Alecia Rokes, Daria Van Tyne, Vaughn S Cooper","doi":"10.1101/2024.09.10.612322","DOIUrl":null,"url":null,"abstract":"Identifying resistance mechanisms to novel antimicrobials informs treatment and antimicrobial development, but frequently identifies multiple candidate resistance mutations without resolving the driver mutation. Using whole genome sequencing of longitudinal Pseudomonas aeruginosa that developed imipenem/cilastatin/relebactam and ceftolozane/tazobactam resistance during ceftazidime/avibactam treatment, we determined mutations resulting in cross-resistance. Penicillin-binding protein ftsI, transcriptional repressor bepR, and virulence regulator pvdS were found in resistant isolates. We conclude that peptidoglycan synthesis gene mutations can alter the efficacy of multiple antimicrobials.","PeriodicalId":501357,"journal":{"name":"bioRxiv - Microbiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mutations Leading to Ceftolozane/Tazobactam and Imipenem/Cilastatin/Relebactam Resistance During in vivo exposure to Ceftazidime/Avibactam in Pseudomonas aeruginosa\",\"authors\":\"Glenn James Rapsinski, Alecia Rokes, Daria Van Tyne, Vaughn S Cooper\",\"doi\":\"10.1101/2024.09.10.612322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying resistance mechanisms to novel antimicrobials informs treatment and antimicrobial development, but frequently identifies multiple candidate resistance mutations without resolving the driver mutation. Using whole genome sequencing of longitudinal Pseudomonas aeruginosa that developed imipenem/cilastatin/relebactam and ceftolozane/tazobactam resistance during ceftazidime/avibactam treatment, we determined mutations resulting in cross-resistance. Penicillin-binding protein ftsI, transcriptional repressor bepR, and virulence regulator pvdS were found in resistant isolates. We conclude that peptidoglycan synthesis gene mutations can alter the efficacy of multiple antimicrobials.\",\"PeriodicalId\":501357,\"journal\":{\"name\":\"bioRxiv - Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.10.612322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.10.612322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mutations Leading to Ceftolozane/Tazobactam and Imipenem/Cilastatin/Relebactam Resistance During in vivo exposure to Ceftazidime/Avibactam in Pseudomonas aeruginosa
Identifying resistance mechanisms to novel antimicrobials informs treatment and antimicrobial development, but frequently identifies multiple candidate resistance mutations without resolving the driver mutation. Using whole genome sequencing of longitudinal Pseudomonas aeruginosa that developed imipenem/cilastatin/relebactam and ceftolozane/tazobactam resistance during ceftazidime/avibactam treatment, we determined mutations resulting in cross-resistance. Penicillin-binding protein ftsI, transcriptional repressor bepR, and virulence regulator pvdS were found in resistant isolates. We conclude that peptidoglycan synthesis gene mutations can alter the efficacy of multiple antimicrobials.