G. M. Nazin, A. I. Kazakov, A. V. Nabatova, N. N. Volkova, G. V. Shilov
{"title":"1,1-Diamino-2,2-dinitroethylene (FOX-7) 的分解动力学。6.固态反应早期阶段的诱导期","authors":"G. M. Nazin, A. I. Kazakov, A. V. Nabatova, N. N. Volkova, G. V. Shilov","doi":"10.1134/S1990793124700350","DOIUrl":null,"url":null,"abstract":"<p>The kinetics of the thermal decomposition of the FOX-7 compound at 155°C under semiopen conditions in vessels with a volume of <i>V</i> = 0.8–0.9 cm<sup>3</sup> in an air atmosphere and the degree of filling of the vessel with substances <i>m</i>/<i>V</i> = 0.03–0.72 g/cm<sup>3</sup> has been studied by the gravimetric method. It is found that at the largest m/V, an induction period is observed in the early stages of the reaction, during which the rate of mass loss of the sample is lower by a factor of ten than the rate of decomposition of FOX-7 in the solid phase. With a decrease in <i>m</i>/<i>V</i>, the induction period is shortened and at <i>m</i>/<i>V</i> = 0.04 g/cm<sup>3</sup> it disappears altogether. The appearance of the induction period is due to the fact that nitronic acid, which is the only product of the first stage of decomposition of FOX-7, is well adsorbed on the surface of FOX-7 crystals. At the same time, it almost completely loses its reactivity. As a result, until the end of the adsorption process, the decomposition of FOX-7 proceeds without the formation of gaseous products, and the reaction rate is not fixed by the gravimetric method suitable for studying the kinetics of the reaction at the early stages of decomposition of FOX-7.</p>","PeriodicalId":768,"journal":{"name":"Russian Journal of Physical Chemistry B","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetics of Decomposition of 1,1-Diamino-2,2-dinitroethylene (FOX-7). 6. The Induction Period in the Early Stages of a Reaction in the Solid State\",\"authors\":\"G. M. Nazin, A. I. Kazakov, A. V. Nabatova, N. N. Volkova, G. V. Shilov\",\"doi\":\"10.1134/S1990793124700350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The kinetics of the thermal decomposition of the FOX-7 compound at 155°C under semiopen conditions in vessels with a volume of <i>V</i> = 0.8–0.9 cm<sup>3</sup> in an air atmosphere and the degree of filling of the vessel with substances <i>m</i>/<i>V</i> = 0.03–0.72 g/cm<sup>3</sup> has been studied by the gravimetric method. It is found that at the largest m/V, an induction period is observed in the early stages of the reaction, during which the rate of mass loss of the sample is lower by a factor of ten than the rate of decomposition of FOX-7 in the solid phase. With a decrease in <i>m</i>/<i>V</i>, the induction period is shortened and at <i>m</i>/<i>V</i> = 0.04 g/cm<sup>3</sup> it disappears altogether. The appearance of the induction period is due to the fact that nitronic acid, which is the only product of the first stage of decomposition of FOX-7, is well adsorbed on the surface of FOX-7 crystals. At the same time, it almost completely loses its reactivity. As a result, until the end of the adsorption process, the decomposition of FOX-7 proceeds without the formation of gaseous products, and the reaction rate is not fixed by the gravimetric method suitable for studying the kinetics of the reaction at the early stages of decomposition of FOX-7.</p>\",\"PeriodicalId\":768,\"journal\":{\"name\":\"Russian Journal of Physical Chemistry B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Physical Chemistry B\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1990793124700350\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Physical Chemistry B","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1990793124700350","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
Kinetics of Decomposition of 1,1-Diamino-2,2-dinitroethylene (FOX-7). 6. The Induction Period in the Early Stages of a Reaction in the Solid State
The kinetics of the thermal decomposition of the FOX-7 compound at 155°C under semiopen conditions in vessels with a volume of V = 0.8–0.9 cm3 in an air atmosphere and the degree of filling of the vessel with substances m/V = 0.03–0.72 g/cm3 has been studied by the gravimetric method. It is found that at the largest m/V, an induction period is observed in the early stages of the reaction, during which the rate of mass loss of the sample is lower by a factor of ten than the rate of decomposition of FOX-7 in the solid phase. With a decrease in m/V, the induction period is shortened and at m/V = 0.04 g/cm3 it disappears altogether. The appearance of the induction period is due to the fact that nitronic acid, which is the only product of the first stage of decomposition of FOX-7, is well adsorbed on the surface of FOX-7 crystals. At the same time, it almost completely loses its reactivity. As a result, until the end of the adsorption process, the decomposition of FOX-7 proceeds without the formation of gaseous products, and the reaction rate is not fixed by the gravimetric method suitable for studying the kinetics of the reaction at the early stages of decomposition of FOX-7.
期刊介绍:
Russian Journal of Physical Chemistry B: Focus on Physics is a journal that publishes studies in the following areas: elementary physical and chemical processes; structure of chemical compounds, reactivity, effect of external field and environment on chemical transformations; molecular dynamics and molecular organization; dynamics and kinetics of photoand radiation-induced processes; mechanism of chemical reactions in gas and condensed phases and at interfaces; chain and thermal processes of ignition, combustion and detonation in gases, two-phase and condensed systems; shock waves; new physical methods of examining chemical reactions; and biological processes in chemical physics.